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Abstract 
 

        A theoretical model describing a magnetohydrodynamic (MHD) micropump is 

presented.  The micropump is driven by the Lorentz force which is induced as a result of 

interaction between an applied electric field and a perpendicular magnetic field. The Lorentz 

force is used to pump an electrically conducting liquids along a microchannel.  

     A two-dimensional transient fully developed laminar flow and temperature 

distribution is modeled, where the velocity and temperature profiles under the effect of 

Lorentz force are solved both analytically and numerically. The governing equations are 

solved analytically by an eigenfunction expansion method, and numerically by a finite-

difference (ADI) method. The numerical and analytical results are found to be in good 

agreement with each other. The effect of different parameters on the transient and steady 

flow velocity and temperature, such as aspect ratio, Hartman number, Prandtl number, and 

Eckert number is studied. The results obtained showed that controlling the flow and the 

temperature can be achieved by controlling the potential difference, the magnetic flux, and 

by a good choice of the electrical conductivity.  

     The transient, laminar, incompressible, and developing flow equations are 

numerically solved using the finite difference method and the SIMPLE algorithm. The effect 

of Hartman number on the transient velocity profile and the entrance region length is studied. 

It is found   that controlling the electrical conductivity  and magnetic flux density will allow 

to control the entrance region length. 

The effect of fluctuating Lorentz force on the AC magnetohydrodynamic micropump is 

studied for both developing and fully developed flow. It was found that at high frequency, 

the pulsed volume is small, which yields a continuous flow instead of pulsating flow. The 

magnitude and direction of the flow can be controlled by the phase shift between the 

electrical and magnetic fields.  
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Chapter 1 
Introduction 

      

1.1   Micro-Electromechanical systems (MEMS) 

  

    Micro-electromechanical systems (MEMS) is a technology used to create small 

integrated devices or systems that combine mechanical and electrical components. They can 

range in size from a few micrometers to millimetres. These systems have the ability to sense, 

control and actuate on the micro scale, and generate effects on the macro scale. The 

advantages following from the use of microsystems compared to macrosystems are: 

      1. Smaller size of the devices (bringing analysis closer to the process)  

2. Reduced fabrication costs (depending on the volume of production)  

3. Lower energy consumption (due to smaller size of the device, provides suitability 

for wireless solutions)  

4. Smaller volumes of expensive reagents (or also suitable for situations, where 

sample is not available in large enough volume)  

      5. Better performance 

In the most general form, MEMS consist of mechanical microstructures, microsensors, 

microactuators and microelectronics, all integrated onto the same silicon chip.  Microsensors 

detect changes in the system’s environment by measuring mechanical, thermal, magnetic, 

chemical or electromagnetic information or phenomena. Microelectronics process this 

information and signal the microactuators to react and create some form of changes to the 

environment.  
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1.2   Microfluidics 

 

 Micro-fluidic systems were one of MEMS developed in recent years. In these years, 

many papers that studied  very small devices controlling or sensing flow named microflow 

devices have been published.  

Microflow systems consist of  nozzles, pumps, reservoirs, mixers, valves, sensors etc., 

can be used for many applications including drug dispensing, ink-jet printing and general 

transport, analysis and production of liquids, gases and their mixtures. In addition, the 

medical industry has shown interest in microfluidics technology.  

1.3.  Micropumps 

 

One of the most common devices in microfluidic systems is the micro pump, which plays 

an important role in a micro-fluidic system, and can be used in many application fields, such 

as fluid distribution, medical transportation, and micro cooling of electronic components.  

Clearly, the need to precisely control gas and fluid flow is critical for biomedical systems. 

Hence, there have been many efforts to develop low-cost high-precision microneedles, 

microfilters, microvalves and micropumps.  

Several methods of microactuation have been used to drive micropumps. They depend 

on electrostatic, magnetic, and piezoelectric forces.   

Figure (1.1) illustrates the classification of micropumps. The typical operation range of 

displacement micropumps lies between 10 μl/min and several milliliters per minute. For flow 

rates less than 10 μl/min, alternative dynamic pumps or non-mechanical pumps are needed 

for an accurate control of these small fluid amounts .  
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Figure 1.1: Classification of micropumps 

1.3.1   Mechanical micropumps  

Mechanical pumps can be divided according to the principles by which mechanical 

energy is applied to the fluid. Mechanical pumps are divided into two major categories: 

displacement pumps and dynamic pumps. In displacement pumps, such as peristaltic, 

reciprocating and rotary pumps, energy is periodically added by the application of force to a 

movable boundary. In dynamic pumps, such as ultrasonic pumps and centrifugal pumps, 

energy is continuously added to increase the fluid velocities within the pump.  

Reciprocating pumps  

A reciprocating pump consists of a pressure chamber with an actuated diaphragm and 

two check valves. The actuator can be a piezoelectric, pneumatic or electrostatic actuator, 

for example. In the first phase of pumping, liquid is sucked into the chamber and in the next 

phase, pumped out. The check valves prevent flow to the wrong direction.  
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A valve-less reciprocating pump contains diffuser/nozzle units instead of check valves. 

In valve-less reciprocating valves, there is always flow to both directions but the parameters 

of the diffusers and nozzles determine the direction and volume of the net flow. The 

operating principle of the valve-less micropump is presented in Figure (1.2).  

 

 

 Figure 1.2: Operating principle of diffuser based micropump (Woias 2005) 

Peristaltic pumps  

In peristaltic pumps, the pumping concept is based on the peristaltic motion of the pump 

chambers which squeezes the fluid in the desired direction. Peristaltic pumps need three or 

more pump chambers with actuating membrane.  

Rotary pumps  

In rotary pumps, the liquid is actuated using rotating gears which mesh together. One 

gear is turned by an external or internal actuator and it drives the other gear. The space 

between the gear teeth moves the liquid through the pump chamber.The operation principle 

can be seen in Figure (1.3)  
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Figure 1.3: An operation principle of a gear pump (Nguyen et al, 2002) 

1.3.2 Non-mechanical micropumps  

Non-mechanical micropumps add momentum to the fluid by directly converting non-

mechanical energy into kinetic energy without mechanical movement of a structure. While 

mechanical pumping is mostly used in macroscale pumps and micropumps with a relatively 

large size and high flow rates, the non-mechanical pumps have advantages when used in the 

microscale. The driving forces can be electric, magnetic, thermal, chemical or surface 

tension forces. The non-mechanical micropumps can be categorized into 

electrohydrodynamic (EHD) pumps, electrokinetic pumps, and magnetohydrodynamic 

(MHD) pumps. 

Electro-hydro dynamic (EHD) pumps  

Electrohydrodynamic pumps are based on electrostatic forces acting on nonconductive 

fluids. EHD pumps can be categorized as EHD injection pumps (static) and EHD induction 

pumps (dynamic). 
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Electrokinetic pump  

Electrokinetic pumps use a static electric field for pumping conductive fluid. The 

electrokinetic phenomenon can be divided into electrophoresis and electro-osmosis. 

Electrokinetic flow results from the effect of electrical field on charged particles in the fluid 

and fluid itself, when the fluid is placed in a narrow capillary. The force on the particles in 

the fluid leads to electrophoresis while the force on the fluid in a narrow capillary leads to 

electro-osmosis. Since electrophoresis and electro-osmosis occur at the same time, electro-

osmosis usually determines the overall direction of the fluid. 

 

Magneto-hydro dynamic (MHD) pump  

  

The magnetohydrodynamic (MHD) micropump is one of the important micropumps 

which has no moving parts, generates continuous flow, and has potential applications in 

biomedical studies. The pumping source in the (MHD) micropumps is the Lorentz force 

which is produced  as a result of interaction between the magnetic and electric fields. The 

magnitude of the force depends on the electric current across the channel, the magnetic flux 

density and the width of the channel. The resulting Lorentz force affects the ions in the 

solution and thus, propels the fluid. Because the Lorentz force acts on the bulk fluid and 

creates a pressure gradient, MHD pumps generate a parabolic velocity profile similar to 

pressure-driven flows. Figure (1.4) shows a schematic diagram of the MHD micropump. 
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Figure 1.4:   A schematic diagram of the MHD micropump 

 

Compared with other types of non-mechanical micropumps, the MHD micropump has 

several advantages, such as  

1- The MHD micropumps operate without moving parts. 

2- The pumps require low actuation voltages ( less than 10 V). 

3- Similar to pressure-driven flows, forword and reverse flows can be obtained. 

4- The solution with least slight electrical conductivity can be pumped. 

5- The fabrication process is simple. 

6- The pumps produce continuous fluid flow. 
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Hence, it is believed that the MHD micropump can be used in biomedical devices such 

as a drug delivery system or it can be used to propel highly conducting fluids such as liquid 

metals and ionized gases and it can be used in fluid stirring and mixing. 
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Chapter 2 

Literature survey 
 

2.1   MHD micropumps 

 

A review study of microflow devices and systems was presented by (Shoji and Esashi, 

1994). In the study, microflow devices including microvalves, micropumps and microflow 

sensors fabricated by micromachining were reviewed. Schomburg et al.(1993) and 

Schomburg et al.(1994) developed pumps and valves for microfluidic systems using 

advanced micromachining technology. 

A review studies of micropumps were presented by (Nguyen et al., 2002) and (Woias, 

2005). Nguyen et al.(2002) divided the micropumps into two  categories: Mechanical 

micropumps which have moving mechanical parts, and non-mechanical micropumps 

without moving parts. Woias (2005) divided micropumps into two groups: Reciprocating 

micropumps which use the oscilaory or rotational movement of fluid, and continuous flow 

micropmp (including magnetohydrodynamic, electrohydrodynamic, electroosmatic and 

electrochemical actuation mechanisms) which are based on a direct transformation of non-

mechanical or mechanical energy into a continuous fluid movement. 

 

According to these studies the micropumps can be divided into two large groups, 

mechanical micropumps and non-mechanical micropumps. Koch et al.(1998), Ullmann 

(1998), Richter et al.(1998), Jun and Kim(1998), Bohm et al.(1999), Zeng et al.(2001), Yun 

et al.(2001), and Debesset et al.(2004) studied some of these micropumps that are used to 

propel fluid for different applications. 
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In the last century, the MHD principle has been widely used and studied and there are many 

studies of the MHD channel flows in macroscopic scale. Ramos and Winowich (1986) 

analyzed the steady state MHD channel flow using a finite difference method. The results of 

the calculations indicate that the electromagnetic forces yield M-shaped velocity profiles. 

Ueno (1991) studied the inertia effect in two dimensional MHD channel flow under a 

traveling sine wave magnetic field. He concluded that the inertia effect to the power output 

is very small. Also, Ueno (1993) studied the effect of turnaround lines of magnetic flux in 

two dimensional MHD channel flow. It was concluded that a set of turnaround lines of 

magnetic flux cause a set of recirculating flows. Bessaih and Kadji (1999) studied MHD 

flow of a liquid metal Flow driven by a rotating disk. The results obtained showed that the 

flow can be controlled by a good choice of electrical conductivity. 

Attia (2001) studied the effect of variable viscosity on the transient MHD flow of dusty 

fluid with heat transfer. He found that some important effects for the variable viscosity are 

indicated. 

West et al.(2002) studied application of MHD actuation to continuous flow chemistry 

where fluid propulsion was achieved using AC MHD actuation. Wang et al.(2003) designed 

a programmable diffusion bioassays based on MHD microfluidic system. 

Brener and Park(2004) studied and discussed the design and fabrication of 

electromagnetic actuators and their application to affect the wall shear stress on a fully 

turbulent channel flow. Satou et al.(2004) developed a new AC MHD calculation for 

electromagnetic stirring. 
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Khalzov and Smolyakov (2006) proposed a new numerical method to calculate two-

dimensional steady state MHD flows of incompressible liquid metals in linear and circular 

thin-wall ducts of a rectangular cross section. 

Recently, theoretical and experimental studies on DC and AC MHD micropumps were 

investigated. An MHD micropump using a DC current and a permanent magnet was firstly 

described by (Jang and Lee, 1998). 

     Jang and Lee, (2000) studied theoretically and experimentally an MHD micropump. 

They obtained the performance of the micropump by measuring head difference and flow 

rate. In this study, bubble generation by the electrolysis of the conducting liquid was 

observed. 

The use of magnetohydrodynamic (MHD) to circulate fluids in conduits fabricated with 

ceramic tapes was described by (Zhong et al., 2002). The experiments described used 

mercury slags, saline solution and deionized water as the conducting fluid. 

To avoid gas bubbles, Homsy et al. (2005) described the operation of DC (MHD) 

micropump at a high current densities where the gas bubbles was not observed in the 

pumping channel. They have discussed experimental observations where they noted that the 

flow velocity was higher than that calculated. One explanation is that the temperature in the 

channel began to rise because of Joule heating occurring in the channel. Above a certain 

threshold the temperature will decrease the viscosity of the pumped solution, leading to an 

increase in flow velocity.  
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Patel and Kassegne (2006) developed a numerical frame work to investigate different 

flow channel geometries influenced by the micromachining process, effects of non-uniform 

magnetic and electric fields, Joule heating, and electroosmatics in MHD micropumps. 

In a DC (MHD) micropump with permenant magnet, the electrolytic reaction that enables 

current conduction also produces gas bubbles that impede fluid flow and causes electrodes 

to dissolve. This limits the practical application of such a device to non electrolytic 

conductors, such as liquid metals. When an AC current of sufficiently high frequency is 

passed through an electrolytic solution, the chemical reactions are reversed rapidly enough 

that bubbles never have a chance to form and no electrode degradation can occur (Lemoff et 

al., 1999). 

Lemoff and Lee (2000) described the theory, fabrication method and experimental results 

of an AC (MHD) micropump. Pumping was demonstrated in several different electrolytic 

solutions. Eijkel et al.(2003) developed and fabricated an AC magnetohydrodynamic 

micropump for chromatographic application.  

A new study of (MHD) flow is presented by (Qian et al., 2005). They studied 

theoretically the (MHD) flow of a RedOx electrolyte in a straight conduit, and solved the 

coupled momentum and advection equation. 

In addition to (MHD) pumping, study of mixing systems and microfluidic networks 

using (MHD) pumping has been made. Bau et al. (2001) and Yi et al. (2002) constructed 

and analyzed two types of a magnetohydrodynamic stirrers experimentally and theoretically. 

An active micromixer has been developed that uses electric and magnetic fields to create 

Lorentz forces that induced MHD flows in a solution of an electrolyte (Bau et al., 2001). 

The device was fabricated from ceramic tapes. Electrodes were created with gold paste, and 

were placed parallel to the channel. A permanent magnet was placed under the mixing  
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device. The mixing chamber was 1 mm deep, 4.7 mm wide, and 22.3 mm long (volume 

~100 μL). When potential difference was applied to the electrodes, Lorentz forces were 

generated parallel to the axis of the chamber, and the solution was mixed within several 

seconds. Yi et al. (2002) investigated experimentally and theoretically a 

magnetohydrodynamic (MHD) stirrer that exhibits chaotic advection . 

The area of micrototal analysis systems, also called (lab on a chip) is grawing rapidly 

(Reyes et al., 2002). Lemoff and Lee (2003) presented an  MHD microfluidic switch which 

could form the basis for general microfluidic circuits. The switch uses an AC MHD pumping 

mechanism.  

2.2   Present contributions to the previous work 

 

The above previous researches presented and analyzed different models of the MHD 

micropumps which can be used in biomedical devices and microfluidic propulsion 

applications. Most of these researches studied the micropump flow experimentally or 

theoretically by assuming one dimensional steady fully developed flow, where the Poiseuille 

condition which neglects the side-wall frictional effects was used to solve for velocity 

distribution.  

     In this study a theoretical model of a DC and AC MHD micropump flow will be analyzed. 

The present contributions to the previous work are: 

 

     1- A transient two dimensional fully developed flow in a DC MHD micropump is 

modeled and analyzed. The dimensionless governing equations are solved numerically using 

suitable numerical technique and analytically using eigenfunction expansion method. The 

numerical and analytical results are compared with each other to enhance the solution.  
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      2- A transient  two dimensional developing flow in a DC MHD micropump is also 

modeled, and the dimensionless governing equations are solved numerically using pressure-

correction method and SIMPLE algorithm. The results are verified by comparing them with 

analytical solutions of the fully developed region in the pump channel. 

      3- The effect of fluctuating Lorentz force on the transient behavior of an AC MHD 

micropump is studied for both fully developed and developing flow. A sinusoidal electric 

field with a perpendicular sinusoidal magnetic field with phase shift are applied. The 

difference between the DC and AC transient flow behavior is shown and studied.  

     4- The effect of dimensionless parameters such as Hartmann number, aspect ratio and 

prandtl number on the DC and AC MHD flow is studied. 

      5- It is noticed previously that there is an important effect of heat generation on other 

types of micropumps. Hence the effect of the heat generation produced by constant and 

fluctuating Lorentz force on temperature profile is studied in this work. The dimensionless 

energy equation is solved numerically and analytically and the effect of different parameters 

on temperature distribution such as Hartmann number, Stanton number, Eckert number and 

Prandtl number is discussed. 

6- To design the MHD micropump, a good selection of the magnitude of certain 

parameters must be done. Hence the effect of different dimensional parameters such as: 

cross-sectional dimensions, magnetic flux, electric current density, frequency, phase angle 

and applied voltage on controlling the transient and steady flow and temperature rise for both 

DC and AC MHD pumping is studied. 

     7- The obtained results for the numerical analysis of a DC and AC MHD flow are 

compared with exact analytical solutions of the same governing equations or reduced forms 

of them. 
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Chapter 3 

Mathematical Modeling 
  

3.1   MHD theory 

     An inclined view of the MHD micropump and the coordinate system used are shown 

in Figure (3.1). A conductive liquid with a density   , a dynamic viscosity  , and an 

electrical conductivity   fills a rectangular cross-section channel of   width w, height h, and 

length L. The coordinates x, y, and z are aligned, respectively, along the channel's axis, width, 

and height. 

 

 

Figure 3.1:  Inclined view of an MHD micropump 

 

     The channel is subjected to a potential difference V imposed across the opposing 

electrodes that induces an electric current of density J. The channel is placed in a uniform 

magnetic field of flux density B in the z direction. 
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The interaction between the magnetic and electric fields produces a body Lorentz force 

BJ


  that is perpendicular to both J


 and B


. The Lorentz force is used to pump the 

conducting liquids along the microchannel. 

     To illustrate the pumping mechanism in details, the forces exerted as a result of the 

interaction between the electric and the magnetic field will be analyzed. As the electric 

current is carried between the electrodes across the channel, positive and negative ions will 

be formed and moved with opposite transverse velocities as shown in figure (3.1). The force 

exerted on every ion of species (i) in the solution will equal: 

)3.1(                                                                                                           L+F el=F iF 

 

Where Fel  is the electrical field force and FL is the Lorentz force. The electrical field 

force on every ion is: 

qEZF iel                                                                                                            (3.2) 

Where Z is the valance, q is the unit charge. Due to the electroneutrality of the bulk 

solution   
i

iitotalel qNZEF 0,  (Eijkel et al. 2003), Where Ni is the number of ions of 

species i in the channel. 

 

Now the second term in equation (3.1) is the Lorentz force: 

BvqZF iiL

                                                                                                      (3.3) 

Where iv  is the velocity of the ion. 

The velocity has two components, one parallel to the electrical field and one along the 

channel length axis. The velocity component parallel to the electrical field exerts the first 

component of the Lorentz force: 


i

iiiL NqZBEF 


1                                                                                       (3.4) 

  



www.manaraa.com

 17 

 

Where i  is the electrophoretic mobility (m2/sV)  and Ei  is the migration velocity. 

But 
i

iii NqZ   is the electrical conductivity multiplied by it's volume. Hence 

BEVF cL


1                                                                                                    (3.5) 

Where Vc is the channel volume, E


is the electric field intensity and  is the electrical 

conductivity, or BJVF cL


1  Where J is the current density. 

Now the velocity component  along the channel length axis will exert the second 

component of the Lorentz force (which is the magnetic force exerted on a current carrying 

conductor) which is 

BJFL


2                                                                                                                 (3.6) 

Where the current   BvJ
  induced when the magnetic field induces a voltage in 

the conductor of magnitude Bv
 , then the total conduction current is now defined as: 

 BvEJ


                                                                                                        (3.7) 

Then  the total Lorentz force will be 

  BBvEBJFL


                                                                                    (3.8) 

And the work done on the system per unit time by the Lorentz force is 

W=FL.v 

Or vBJW                                                                                                        (3.9) 

But the magnetic field induces a voltage in the conductor of magnitude JBv   then 


JJ

W



                                                                                                                  (3.10) 
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In this work, a DC and AC Lorentz force will be used to propel fluid in MHD micropump. 

In AC pumping, a sinusoidal electric current with a perpendicular sinusoidal magnetic field 

will be used. The electric current and magnetic fields will have equal frequency and a phase 

difference between them. 

To illustrate the AC phase difference concept, figure (3.2) shows the relation between 

two AC voltages or currents that are out of step with each other, which means that the two 

waveforms are not synchronized; that their peaks and zero points do not match up at the 

same points in time.  

 

 

Figure 3.2:   Out of phase waveforms 

The two waves shown above (A versus B) are of the same amplitude and frequency, but 

they are out of step with each other. In technical terms, this is called a phase shift. 

3.2   General Governing Equations 

      The governing equations of the MHD micropump that present the fluid motion are: 

The Ohm's Law: 

 BuEJ


                                                                                               (3.11) 
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The continuity equation: 

 

0. u                                                                                                                 (3.12) 

 

The time dependent momentum equation: 

 

  BJupuu
t
u 



 2.                                                                (3.13) 

 

And the energy equation: 

  2.p p

T J J
c c u T K T

t
 


 

    


                                                               (3.14) 

In the above equations, u


 is the fluid velocity,  is the density,  is the viscosity, Cp is 

the specific heat, k is the thermal conductivity and T is the temperature. 

   In the following sections, the governing equations of two dimensional fully developed 

flow and developing flow are presented, where the fluid can be propelled by constant or 

fluctuating Lorentz force. Various assumptions are set to develop the model: 

1- Two-dimensional. 

2- Laminar flow. 

3- Incompressible fluid. 

4- Constant fluid properties. 

5- Negligible radiation heat transfer. 

6- Negligible gravitational effects. 

      7- The current flow is assumed to be one dimensional. 
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3.3    Governing Equations of the Fully Developed Flow  

 

     In this section, the governing equations of the transient incompressible two-

dimensional fully developed flow with both constant and fluctuating Lorentz force are 

studied. The velocity components in the y, and z directions are neglected compared with the 

velocity along the conduit's axis.  

For the fully developed flow the nonlinear term in equation (3.13) goes to zero, and the 

continuity equation goes to zero since  0


x
u

 .  

The induced current in the channel is    

 BvEJ


                                                                                                (3.15) 

It can be written as: 

  jik BuEBvEJ   


                                                                (3.16) 

Then kk uBEJ   


                                                                                     (3.17) 

Now the Lorentz force is:  

 ijkjkL uBEBBuBBEBJF 2  


                                     (3.18) 

By introducing the Lorentz force given in equation (3.18), the two dimensional x-

momentum equation will be: 

      BuBE
z
u

y
u

x
p

t
u






















  2

2

2

2

                                                     (3.19) 

     In the energy equation, the flow is assumed thermally fully developed, and the viscous 

dissipation effects are neglected because the fluid velocity is very small. Hence the energy 

equation will be: 

 
pr C
uBE

z
T

y
T

Pt
T


 2

2

2

2

2 



















                                                              (3.20) 
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Now the governing equations of transient fully developed flow using an AC 

magnetohydrodynamic MHD pumping mechanism will be studied. A sinusoidal electric 

current with a perpendicular sinusoidal magnetic field are used. The electric current and 

magnetic fields applied have equal frequency and a phase difference between them. 

When applying the AC current field and magnetic field with a phase shift  and equal 

angular frequency  the two dimensional transient fully developed momentum equation will 

be: 

   tBtuBtE
z
u

y
u

dx
dp

t
u  sinsinsin2

2

2

2




















               (3.21) 

And the energy equation becomes: 

            
  

pr C
tuBtE

z
T

y
T

Pt
T


 2

2

2

2

2 sinsin 



















                       (3.22)                                        

To write the governing equations in dimensionless form, the following dimensionless 

variables can be used: 

w
y

y   ,  
w
z

z   ,  
0u
u

u   ,  
T
t  ,  

EB
dxdp

P


  ,  
w

w

T
TT

  

Where VBwu 0 , T* is the period of the alternations in the electric field and magnetic 

field, and Tw is the wall temperature. Substituting the above dimensionless variables leads 

to the following dimensionless equations: 

 

Momentum equation: 

      























PuHa
z

u

y

uu
St 


2sin2sin2sin 22

2

2

2

2
2              (3.23)                       

With the following boundary conditions:  

   
    0,,,0,

0,,1,,0












yuyu

zuzu
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And the energy equation: 

 



,,
1

2

2

2

2
2 


























zyS
zyp

St
r

                                                             (3.24) 

Where the source term is: 

     
2

2
2 2sin

2sin
,, 






 


   u

Ha
EcHazyS  

In the above equations, 



wBHa  is the Hartman number which is the ratio of the 

magnetic body force to the viscous force, 


T
wSt

1

 is the Stanton number which is the 

ratio of the diffusion time to the forcing period, Pr is the Prandtl number which is ratio of 

the rate of diffusion of viscous effects to rate of diffusion of heat, 
wpTC

uEc
2
0  is the Eckert 

number which is the ratio of kinetic energy to enthalpy change,  and w
h  is the conduit's 

aspect ratio. 

     Now using 


 2w
t

  as the dimensionless time, the above dimensionless equations can 

be reduced to be applicable for the DC fully developed flow: 

Momentum equation 

























PuHa
z

u

y

uu 2
2

2

2

2

1


                                                              (3.25) 

With boundary conditions: 
   
    0,,,0,

0,,1,,0












yuyu

zuzu
                                  (3.26) 
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And the energy equation  

2

2
2

2

2

2

2 11






 


























 


u

Ha
EHa

zyP c
r





                                               (3.27) 

 

With boundary conditions: 
   
    0,,,0,

0,,1,,0












yy

zz
                                       (3.28)                                                     

 

3.4 Governing equations of the developing flow 

     In our model, the width of the channel is assumed to be much larger than it's height 

(w/h>>1), hence we studied the transient incompressible two-dimensional developing flow.  

     The following dimensionless variables can be used to non-dimensionalize the governing 

equations: 

w
x

x   ,  
w
y

y   ,  
0u
u

u   ,  


 2w

t
  ,  

EBw
p

p


   

Where  2
0 EBwu   is the reference velocity. Substituting the above dimensionless 

variables leads to the following dimensionless form of continuity and Navier-Stokes 

equations for an incompressible, two-dimensional developing flow. 

Continuity equation 

0















y
v

x
u

                                                                                         (3.29) 

X-momentum equation 








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eD
2
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


               (3.30) 
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Y-momentum equation 

2

2

2

2

2
1
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 
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y

v

x

v
y
p

y
v

v
x
v

uR
v

eD



                                 (3.31) 

     In the above equations, u and v are the dimensionless velocity components in x and 

y directions,   is the dimensionless time, x and 
y are the dimensionless coordinates, 




wBHa is the Hartman number,


hDu0Re  is the Reynolds number which is the ratio 

of inertia force to viscous force and Dh is the hydraulic diameter. 

      

     The boundary conditions can be specified as follows. The velocity is zero at all 

boundaries except the channel outlet. 

   
   
    01,1,

00,0,

0,0,0













xvxu

xvxu

yvyu

                                                                               (3.32) 

     The flow is fully developed at the channel outlet 

 

0,, 
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










 





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w
L

x
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y
w
L

x
u

                                                                             (3.33)                                                                              

 

Initially,  at τ=0,      0,,   yxvyxu  

Now similar to the study of the AC fully developed flow the electric and magnetic 

field applied in an AC MHD micropump are sinusoidal and have phase shift and equal 

angular frequency. So the governing equations that suitable for developing flow are 

0. u                                                                                                              (3.34) 
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    



ttBJupuu
t
u

sinsin. 2


                                (3.35) 

 

     The following dimensionless variables can be used to non-dimensionalize the governing 

equations: 

w
x

x   ,  
w
y

y   ,  
0u
u

u   ,  
T
t  ,  

EBw
p

p


   

 

Then the dimensionless form of continuity and Navier-Stokes equations for an 

incompressible, two-dimensional AC developing flow can be written as:  

Continuity equation 

0






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y
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u

                                                                                           (3.36) 

X-momentum equation 

     






2sin2sin2sin

Re
2

1

22
2

2

2

2

2
































































 





uHa
y

u

x

u
x
p

y
u

v
x
u

u
u

St D

                           (3.37) 

Y-momentum equation 
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     The boundary conditions can be specified as follows. The velocity is zero at all 

boundaries except the channel outlet. 

   
   
    01,1,

00,0,

0,0,0










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xvxu

xvxu

yvyu

                                                                    (3.39) 

 

     The flow is fully developed at the channel outlet 
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                                                                           (3.40)                                                                           

 

Initially,  at τ=0,      0,,   yxvyxu  

 

In this work, the previous dimensionless governing equations (23-27) are going to be solved 

for velocity and temperature distributions for both DC and AC fully developed flow to 

illustrate the effect of Ha, Pr, Ec, and St numbers on the MHD flow. The equations will be 

solved numerically and analytically and a comparison between them will be presented. The 

dimensionless governing equations (29-31) and (36-38) will be solved numerically using 

suitable method  to show the effect of Ha and St numbers on the developing flow for both 

DC and AC pumping. The following chapters illustrate these solutions. 
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Chapter 4 
Fully developed flow solution 

4.1   Introduction 
 

In this chapter a numerical alternating direct implicit (ADI) technique and analytical 

eigen-function expansion method will be used to solve the transient fully developed flow for 

both constant and fluctuating Lorentz force. 

         

4.2   DC (MHD) pumping 

       4.2.1   Analytical approach 

In this section the analytical approach using the eigenfunction expansion method is used 

to solve the momentum equation of the transient DC fully developed flow.      

The dimensionless momentum equation is  
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
                                                              (4.1) 

Where 
 pN 1  

With boundary conditions: 
   
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                          (4.2) 

Consider the eigenfunctions of the related homogeneous problem: 
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                                                                     (4.3) 

   
    0,,,0,

0,,1,,0












yuyu

zuzu
                                                                              (4.4)   
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Since the partial differential equation (4.2) and the boundary conditions are linear and 

homogeneous, we apply the method of separation of variables. 

Let         zyzyu ,,,   

Taking the derivatives and substituting into equation (4.3) yields  

2
2

2

2

2
2 11 






























 zy
Ha                                                          (4.5) 

Where 2 is the separation constant. 

From this equation the two-dimensional eigenvalue problem is 

02
2

2

2

2














zy
        

   
    0,0,

0,1,0












yy

zz
                                             (4.6)                                                               

To solve equation (4.6) let         zgyfzy ,                                            (4.7) 

Take the derivatives and substitute into equation(4.6) yields 

22
22

22

11  



 dz

gd
gdy

fd
f

                                                                           (4.8) 

Two ordinary differential equations result from separation of variables of equation (4.6) 

with two independent variables: 

02
2

2 


f
dy

fd                                                                                                   (4.9) 

With     010  ff  

And 

  022
2

2 


g
dz

gd                                                                                        (4.10) 

With      00  gg  
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Now equation ( 4.9) with it's boundary conditions can be solved, and the solution will be 

    ynyfn sin with  nn                                                                            (4.11) 

Where  ,2,1n  

Now in solving equation (4.10), for each value of n  is still an eigenvalue problem, then 

there are an infinite number of eigenvalues   for each n. 

mn  

Eq.(4.8) can be written as: 

  022
2

2 


g
dz

gd                                                                                         (4.12) 

The solution of this equation is 

    zczczg 22
2

22
1 cossin                                                  (4.13) 

By applying the boundary conditions, the solution will be 

 

    z
m

zgmn 


sin                                                                                        (4.14) 

And  2
2

22
2 


 n

m
mn   

Where   ,,2,1 m     and      ,2,1n  

 From equation (4.1): 

    z
m

ynzymn 
 sinsin,                                                                        (4.15) 

Now assume the solution of equation (4.1) as the following: 
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     








  zyazyu mn
m n

mn ,,,
1 1

                                                            (4.16) 

Which will satisfy the non-homogeneous equation with initial condition    00,,  zyu

.Substituting   ,,  zyu  and it's derivatives from equation ( 4.16) into equation ( 4.1) 

yields: 

      NzyaHa
d

da
mn

m n
mnmn

mn 






  







 ,

1 1

22 


                                          (4.17) 

 where N=1-P*  with      00 mma     

In equation (4.17), we have a double Fourier series. To solve for  mma  

Let:       
 mnmn
mn

mn aHa
d

da
V 22                                                              (4.18) 

 This yields 

Nz
m

ynV
m n

mn 







 

 sinsin
1 1

                                                                    (4.19) 

Let   




  z
m

VzK
m

mnm 


sin
1

                                                                          (4.20) 

Then equation (4.20) can be written as: 

  NynzK
n

m 



 sin

1

                                                                                   (4.21) 

For fixed z this is the Fourier sine series of N. From equation (4.21): 

    dyynNzKm sin2
1

0

                                                                              (4.22) 

Perform the integral yields 

   


n
n
N

zKm cos1
2


                                                                                 (4.23) 
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Now substitute equation (4.23) into (4.20) : 

  



 z

m
Vn

n
N

m
mn 




sincos1
2

1

                                                                 (4.24) 

      Then, 

          dzz
m

n
n
N

Vmn 






sincos1
22

0

                                                         (4.25) 

 nπ
mπ

mnπ
N

Vmn cos1cos1
4

2 





 


                                                              (4.26) 

Then mnV  can be written as 

 


















evennorm

oddnandm
mn

N
Vmn

,0

,
16

2                                                                     (4.27) 

 

Now equation (4.18) is a first order ordinary differential equation and can be solved for  

mma  

   
 22

22

Ha
V

cea
mn

mnHa
mn

mn


 


 

                                                                  (4.28) 

The initial condition is: 

  00 mma  

Then the solution is: 

   
  




22

122
Ha

mn

mn
mn
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Ha

V
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
                                                 (4.29) 
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Substituting into equation (4.16 ) yields : 

   
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V
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In dimensional form, the velocity can be written as: 
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                                                                                                                                       (4.31)   

The mean velocity in the micro-channel can be determined from the equation (White, 1979): 

 

Ac

m Ac
dActzyu

u


 ,,
                                                                                       (4.32) 

Where  Ac is the cross-sectional area of the channel.  

The density here is assumed to be constant, then 

 

Ac Ac

dAczyu
u

,
                                                                                             (4.33) 

Substitute the velocity from equation (4.31) yields 
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 
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Perform the integrals to obtain 
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 
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And then the volume flow rate will be 

 
 
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 

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                                             (4.35) 
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 4.2.2   Numerical modeling 

 The finite difference alternating-direction (ADI) technique which is a time marching 

method is applied to solve the dimensionless Navier-Stokes equation. A uniform grid of a 

number of nodes in the y and z directions is used. The method with about 1000 time steps is 

employed until the steady state solution is achieved. At each time the implicit solutions using 

the Crank-Niclson scheme are directly obtained from the use of Thomas Algorithm. 

Different time step size (  ),( Y ), and ( Z ) are taken to ensure stability, the results show 

that the numerical solution is always stable. 

The numerical (ADI) technique is used to solve 

NuHa
z

u

y
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












 








2

2

2

2

2


                                                                 (4.36) 

Where    pN 1  

Firstly, we treat the y derivative in equation (4.36) implicitly using finite difference 

method. 

NuHa
z

uuu

y

uuuuu n
ji

n
ji

n
ji

n
ji

n
ji

n
ji

n
ji

n
ji

n
ji 












 


















1

,
2

2

1,,1,

2

1
,1

1
,

1
,1,

1
, 22


       (4.37) 

This equation can be written as: 

n
i

n
ji

n
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n
ji KAuBuAu 





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Where 
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Now by using finite difference method treat the z derivative in equation (4.36) implicitly  
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This equation can be written as: 

 

12
1,

2
,

2
1,





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4.3.AC (MHD) pumping 

     4.3.1   Numerical modeling 

     Similar to the solution of the DC fully developed flow, the finite difference 

alternating-direction (ADI) technique can be used to solve the dimensionless momentum 

equation. 
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Firstly, we treat the y derivative in equation ( 4.41 ) implicitly. 
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This equation can be written as: 
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Where 
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The descritization in z direction yields 
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This equation can be written as: 
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     Where 
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The ADI method produce a tri-diagonal matrix which can be solved for velocity using 

Thomas Algorithm which depend on Gauss elimination method. The Thomas Algorithm and 

the program used to solve for velocity and temperature is included in appendix A. 

4.3.2 Steady state analytical solution 

 

In this section, the analytical approach using the eigenfunction expansion method is used 

to solve the momentum equation of the steady state AC fully developed flow.      

The dimensionless time independent Navier-Stokes equation is  
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With boundary conditions: 
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Consider the eigenfunctions of the related homogeneous problem: 
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                                                                        (4.48)                                                                 

Since the partial differential equation (4.48) and the boundary conditions are linear and 

homogeneous, we apply the method of separation of variables. 

Let         zyzyu ,  

Taking the derivatives and substituting into equation (4.48) yields  
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Where 2 is the separation constant. 

From this equation the eigenvalue problem is:: 

02
2
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







z
            00                                                                        (4.50)                                                               

The solution of the above equation is: 

    zczcz  cossin 21                                                                                (4.51) 

By applying the boundary conditions, the solution is: 

    z
n

zn 
 sin                                                                                                 (4.52) 

With 

2

22
2


 n

n   

Where  ,2,1n . Now assume the solution of equation (4.46) as the following: 

     




  zyazyu n
n

n 
1

,                                                                                      (4.53) 

Which will satisfy the non-homogeneous equation with boundary conditions  

    0,1,0   zuzu . 

Substituting    zyu ,  and it's derivatives from equation ( 4.53) into equation ( 4.46) 

yields: 
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Let:     yaHa
dy

ad
V nn

n
n  2sin222

2
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                                                           (4.55) 

 This yields 
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Perform the integral yields 
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p
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Where  ,5,3,1n  

 

Now equation (4.55) is a second order ordinary differential equation and can be solved 

for  na  
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Where    2sin2,1 222 Ham n   

 

And 
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Chapter 5 

Fully developed energy analysis 
In this chapter the dimensionless energy equation will be solved analytically using eigen-

function expansion method and numerically using ADI method in the same way which was 

followed when solving the momentum equation. From these solutions the temperature 

distribution will be given for both DC and AC pumping. 

5.1   DC (MHD) pumping 

     5.1.1   Analytical approach 

The energy equation can be written as 

  
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                                                               (5.1) 

Where the source term is: 
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Take the homogeneous part of equation (5.1): 
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                                                                                   (5.2) 

Let        zyHzy ,,,   

Differentiate and substitute into equation (5.2 ) to yield: 
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Then the two dimensional eigenvalue  problem is: 
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Equation ( 5.3 ) is similar to equation ( 4.6 ) in previous velocity analysis. 

So the solution is: 

Eigenvalues:  
2

22 







 j

iij                                                                       (5.4) 

Where   ,,2,1 i     and      ,2,1j  

With eigenfunctions: 

    z
j

yizyij 
 sinsin,                                                                            (5.5) 

Now refer to the nonhomogeneous equation ( 5.1 ) and assume: 
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Which will satisfy the non-homogeneous equation with initial condition   00,,  zy  

Take the derivatives of equation (5.6 ) and substitute into equation (5.1 ) yields: 
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(5.7) 

 With

  00 ijb 
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The above equation can be written as: 
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Let:     
 ij

ijij
ij b

d
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E
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The equation (5.11) can be written as: 
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      For fixed z this is the Fourier sine series of S. 

From equation (5.12): 
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Where  
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 With initial condition:        00 ijb  
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The solution of the first order ordinary differential equation (3.54) is 
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Where 
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5.1.2   Numerical modeling 

Now the ADI method can be used to solve the energy equation 

 

 



,,
1

2

2

2

2



























zyS
zypr

                                                              (5.18) 

Where the source term is: 
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This equation can be written as: 
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Now treat the z derivative in equation (5.18) implicitly.  
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This equation can be written as: 
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 5.2.AC (MHD) pumping 

Now the ADI  numerical method can also be used to solve the AC energy equation with 

the same steps 
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Firstly, we treat the y derivative in equation (5.23) implicitly.  
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This equation can be written as: 
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This equation can be written as: 
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Chapter 6   

Developing flow solution ( pressure correction method ) 

 

6.1   Introduction 

       

     The pressure correction method which is widely used technique for incompressiple 

viscous CFD applications (Anderson, 1995) is applied to solve the previous two-dimensional 

incompressible Navier-Stokes equations in non-dimensional form. The technique is included 

in an algorithm called SIMPLE (semi-implicit method for pressure-linked equations). 

6.2   Staggered Grid 

 

For discretization of differential equations a uniform staggered grid where the pressures 

and velocities are calculated at different grid points in the x and y directions is used.  In 

figure (6.1) a staggered grid for rectangular area is sketched. Primitive variables ( vu, and p) 

are placed in different places. The velocity component u is calculated at the solid grid points, 

labeled (i-1/2,j), (i+1/2,j), etc., and the velocity component v is calculated at the open grid 

points, labeled (i,j-1/2), (i,j+1/2), etc., and the pressures are calculated at the triangular grid 

points, labeled (i-1,j), (i,j), etc. 

That simple model of staggered grid gives us possibility to use simple discretization with 

second order accuracy. 
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Figure 6.1: Staggered grid used for descritization 

      

6.3  Descritization 

The nonlinear terms in the left hand side of the Navier-Stockes equations can be ignored 

because Reynolds number is small. Hence the resulting system of equations becomes: 
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     we have only three equations for the three dependent variables ,,  vu  and 
p  which  
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have to be discretized on a grid. First we have momentum equations (6.2) and (6.3). 

These equations can be  discretized on staggered grid and  written as follows: 
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y-momentum:         about (i,j+1/2) 
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     from equation (6.4), 
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where 
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in y-mom 
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Similar to the DC developing flow, the pressure correction method can be used to solve 

the two-dimensional incompressible developing Navier-Stokes equations in AC MHD 

pump.  

      The nonlinear terms in the left hand side of the Navier-Stockes equations also can be 

ignored. Hence the resulting system of equations becomes: 
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Now the momentum equations (6.13) and (6.14) can be descritized and written as 

follows: 
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y-momentum:         about (i,j+1/2) 
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Equation (6.15) can be written as: 
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in y-mom 
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6.4 Poisson Equation 
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Now subtract equation (6.23) from (6.7) yields: 
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and subtract  (6.24) from (6.10) yields: 
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Let us arbitrarily set 0,,,  nn vanduBA  then equations (6.25) and (6.26) become:  
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Substitute (6.29) into (6.27) and (6.30) into (6.28) : 
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Now descritize the continuity equation around the point (i,j) : 
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Substitute (6.31) and (6.32) into (6.33) : 
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Similar to DC  the Poisson equation can be developed for AC pumping. It will be: 
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www.manaraa.com

 56 

 

where 
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6.5 SIMPLE algorithm 

 

SIMPLE algorithm is one of the fundamental algorithm to solve incompressible Navier-

Stockes equations.   

The step by step procedure for the SIMPLE algorithm is as follows: 

1  First we have to guess initial values of the pressure 
p and set initial values of 

velocities  
 vu , .  

2 The values of 
11

,
 nn

vu  will be obtained at all appropriate internal grid points. 

3 Substitute these values of 
11

,
 nn

vu  into the pressure-correction equation, and solve 

for P   (using relaxation technique) at all interior grid points. 
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4 Calculate  1nP  at all internal grid points from the equation 

       PPP
nn  1

 

5 The values of 1nP  obtained in step 4 are used to solve the momentum equations 

again. Return to step 2 and substitute 1nP  as  P  in equations (6.23) and (6.24). 

6 Repeat steps 2 to 5 until convergence is achieved 

  

That iterative procedure is rather simple - we use equation (6.35) for all interior points 

on a grid. After that one step of iterative procedure is done. Then we check if solution 

converges. We can do it simply to check maximum change of pressure on a grid. If it is 

bigger than  we continue iterative process. Solution should finish when pressure is 

converged. 

     The method with a large amount of time steps is employed until the steady state 

solution is achieved. 

   The numerical results using SIMPLE algorithm can be verified  by comparing the transient 

fully developed axial velocity comes from developing flow solution with that comes from 

fully developed flow. The SIMPLE algorithm and the program used to solve for velocities 

and pressure is included in appendix A. 
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Chapter 7 

Results and Discussion 
 

 7.1.Fully developed flow 

 

The dimensionless governing equations (3.23-3.28) are solved analytically and 

numerically for a DC and AC fully developed flow. In this section, the transient velocity and 

temperature profiles and the effect of different parameters on these profiles will be discussed. 

To study the effect of these parameters analytical and numerical solutions for the velocity 

and temperature profiles are computed for different values of Hartmann number, aspect ratio, 

Prandtl number, and Eckert number.  

In addition, the transient velocity profile in AC fully developed flow  and the effect of 

Hartmann number and Stanton number on the behavior of the transient velocity will be 

discussed.  

 

Hartmann number effect 

     The effect of Hartmann number on the dimensionless velocity, and dimensionless 

temperature profiles is shown in Figures (7.1) and (7.2) respectively. The effect of increasing 

Ha is to retard the flow and then reduce the velocity and the temperature. This means that 

controlling the electrical conductivity  and magnetic flux density will allow to control the 

velocity and temperature in the channel. Also, It is seen that at low Hartman number the 

velocity and temperature profiles are parabolic, and as the Ha increases, the profiles flatten. 

It is seen that the same effect of Ha on the velocity profile is observed on temperature profile, 

and that the heat generated from the electric current and magnetic flux will cause an increase 

of the temperature from the initial state. In Figures (7.3), and (7.4) the transient behavior of  
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the dimensionless centerline velocity, and dimensionless centerline temperature is 

plotted for different Hartman numbers. It is observed that  increasing Ha will decrease the 

time required to reach steady state conditions. 

     Figures (7.5) and (7.6) illustrate the effect of Hartmann number on the transient 

velocity and temperature profiles for the AC pumping. It is seen that Hartmann number has 

the same effect as in DC pumping. It is noticed in AC pumping that the velocity and 

temperature have pulsating profiles, where the pulse volume decreases as Ha increases and 

this is due to the decrease in magnitude of the velocity. 

 

Prandtl number and Eckert number effect     

 Figures (7.7) and (7.8) depict the transient temperature for different values of the Prandtl 

number for DC and AC pumping, respectively. It is observed that the temperature increases 

and the time required to reach steady state increases as Pr increases because with increasing 

Pr the rate of diffusion of viscous effects increases. Figures (7.9) and (7.10) illustrate the 

effect of the Eckert number ( wpTCuEc 2
0 ) on the temperature. It is seen that the Eckert 

number has the same effect on transient temperature as the prandtl number and this because 

with increasing Ec the kinetic energy increases.  

 

Aspect ratio effect      

Figure (7.11) and (7.12) illustrate the effect of the aspect ratio on the velocity and 

temperature at the mid height of the channel. It is seen that as the aspect ratio increases, the 

height of the channel increases which allow to increase the velocity and temperature. This 

means that controlling the conduit width will allow to control the velocity and temperature. 
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Stanton number effect      

Figures (7.13) and (7.14) depict the transient dimensionless velocity u and dimensionless 

temperature at different Stanton numbers. It is seen that as the Stanton number increases the 

pulsed volume decreases and this because the diffusion time increases compared with forcing 

period. This means that at high frequency, the flow  seems to be continuous instead of 

pulsating flow. It is noticed also that the effect of increasing St is to increase the time required 

to reach steady state. 

 

phase angle effect 

The transient velocity u at different phase angle is shown in figure (7.15). This figure 

illustrate the effect of the phase angle on the flow direction. The figure shows that at phase 

angle =0, the fluid flows in positive direction while it flows in the opposite direction at 

=180o , and there is no flow at high frequencies when =90o . It is concluded that the 

direction and the magnitude of the flow can be controlled by the phase shift between the 

electrical and magnetic fields.  

     A comparison of the analytical and numerical results for the centerline steady-state 

velocity and temperature is shown below in table (7.1) at different Hartman numbers. 

Another comparison for the steady-state velocity and temperature at different dimensionless 

Y coordinate is shown in figure (7.16). The analytical and numerical results  seems to be in 

very good agreement. 

A comparison between the numerical and analytical results of a steady AC fully 

developed flow is shown in figure (7.17). It is seen that the results are in very good 

agreement. 
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Table 7.1. Comparison of analytical and numerical methods for steady-state 

dimensionless centerline velocity and temperature. 

 Velocity Temperature (×10-5) 

Hartman 

number 

Analytical 

solution 

Numerical 

solution 

Analytical 

solution 

Numerical 

solution 

2 0.0904 0.0901 2.7953  2.8964 

4 0.0574 0.0572 1.2534 1.2943 

6 0.0348 0.0347 0.78006 0.8208 

8 0.022 0.0218 0.52224 0.5341 

10 0.0147 0.0146 0.36775 0.3710 

 

 

A Comparison of present results and published analytical results (Zhong et al. 2002) for 

steady state DC fully developed flow velocity with α=1 is shown in figure (7.18). It is shown 

that there is a very good agreement between the results.  
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Figure 7.1: Variation of the dimensionless steady mid width velocity with the 

dimensionless Y coordinate at different Hartman numbers with α=1 
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Figure 7.2: Variation of the dimensionless steady mid width temperature with the 

dimensionless Y coordinate at different Hartman numbers with α=1, Ec=0.01 and 

Pr=0.1 
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Figure 7.3: Transient behavior of the centerline velocity at different Hartman 

numbers with α=1 
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Figure 7.4: Transient behavior of the centerline dimensionless temperature at different 

Hartman numbers with α=1, Ec=0.01 and Pr=0.1 
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Figure 7.5: Transient behavior of the centerline dimensionless velocity at different 

Hartman numbers for the AC pumping with α=1, St=10 and φ=0. 
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Figure 7.6: Transient behavior of the centerline dimensionless temperature at 

different Hartman numbers for the AC pumping with α=1, Ec=0.01, Pr=0.1, St=10 and 

φ=0. 
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Figure 7.7: Transient behavior of the centerline temperature at different Prandtl 

numbers for DC pumping with α=1, Ec=0.01 and Ha=2. 
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Figure 7.8: Transient behavior of the centerline temperature at different Prandtl 

numbers for AC pumping with α=1, Ec=0.01, Ha=2, St=10 and φ=0. 
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Figure 7.9: Transient behavior of the centerline temperature at different Eckert 

numbers with α=1, Ha=2 and Pr=0.1 
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Figure 7.10: Transient behavior of the centerline temperature at different Eckert 

numbers for AC pumping with α=1, Ha=2, Pr=0.1, St=10 and φ=0. 
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Figure 7.11: Transient behavior of the centerline dimensionless velocity at different 

aspect ratio with Ha=2. 
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Figure 7.12: Transient behavior of the centerline dimensionless temperature at 

different aspect ratio with Ha=2, Ec=0.01 and Pr=0.1 
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Figure 7.13: Transient behavior of the centerline dimensionless velocity at different 

Stanton number for AC pumping with α=1, Ha=2 and φ=0. 
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Figure 7.14: Transient behavior of the centerline dimensionless temperature at 

different Stanton number for AC pumping with α=1, Ec=0.01, Pr=0.1, Ha=2 and φ=0. 
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Figure 7.15: Effect of phase shift angle on the dimensionless centerline velocity for 

AC pumping with α=1, Ha=2 and St=10  
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Figure 7.16: Comparison of analytical and numerical methods for steady state 

temperature with α=1, Ec=0.01, Pr=0.1 and Ha=3.  
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Figure 7.17: Comparison of analytical and numerical methods for steady state AC 

fully developed flow velocity with α=1, Ha=10 and φ=0.  
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Figure 7.18: Comparison of present results and published analytical results (Zhong 

et al. 2002) for steady state DC fully developed flow velocity with α=1.  
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analytically and numerically for a DC and AC developing flow. In this section, the transient 

velocity profile, and the effect of Hartmann number and Stanton number on the behavior of 

the transient velocity and the entrance length in DC and AC developing flow is studied. To 

study the effect of these parameters the pressure correction method and SIMPLE algorithm 

are applied to solve for the velocity profiles at different values of Hartmann number and 

Stanton number. 
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Hartmann number effect 

     Figure (7.19) and (7.20) illustrate the effect of Hartmann number on the velocity 

profile and the  entrance region length. It is seen that the mid width velocity components U 

and V decreases as the Hartmann number increases, which means that a slightly conductive 

fluid is enough to propel the fluid. It is also seen that the axial velocity U increases and the 

velocity component V decreases until they reach the fully developed region which is 

influenced by the Hartmann number and this is due to the effect of Hartmann number on the 

Lorentz force. This means that controlling the electrical conductivity  and magnetic flux 

density will allow to control the entrance region length. 

     Figure (7.21) depict the dimensionless pressure P which decreases as the Hartmann 

number increases. It is noticed that the pressure increases at the channel inlet and then 

decreases until reaching a constant pressure gradient at the channel fully developed region. 

     The variation of velocity component U with the dimensionless Y coordinate is shown 

in figure (7.22) at different Hartmann numbers. It is seen that at low Hartman number the 

Axial velocity (U) profile is parabolic, and as the Ha increases, the profiles flatten.  

     The effect of Hartmann number on the transient behavior of the mid width 

dimensionless centerline velocity components U and V is shown in Figures (7.23) and (7.24). 

It is seen that the effect of increasing Ha is to decrease the time required to reach steady state.  

The effect of Hartmann number on the behavior of the transient velocity for AC pumping 

is also discussed. Figures (7.25), (7.26) and (7.27) illustrate the effect of Hartmann number 

on the dimensionless transient velocity components profiles and dimensionless pressure, 

respectively. It is seen that the mid width velocity components U and V affected in the same 

way as in DC pumping. It is noticed also that the velocities have pulsating behavior.  
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Stanton number effect 

     Figures (7.28), (7.29) and (7.30) depict the transient dimensionless velocity 

components, and the dimensionless pressure at different Stanton numbers. It is seen that as 

the Stanton number increases the pulsed volume decreases. This means that at high 

frequency, the  flow  seems to be continuous instead of pulsating flow.  

Phase angle effect 

The transient velocity component u at different phase angle is shown in figure (7.31). 

This figure illustrate the effect of the phase angle on the flow direction. The figure shows 

that at phase angle =0, the fluid flows in positive direction while it flows in the opposite 

direction at =180o , and there is no flow at high frequencies when =90o . It is concluded 

that the direction and the magnitude of the flow can be controlled by the phase shift between 

the electrical and magnetic fields.  

   A comparison of the transient fully developed axial velocity comes from developing flow 

solution ( SIMPLE algorith) with that comes from fully developed flow solution (ADI 

method) is shown in figure (7.32). It is seen that there is a good agreement between the two 

profiles.  
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Figure 7.19: Variation of the dimensionless mid width axial velocity U with the 

dimensionless X coordinate at different Hartman numbers with α=1 and Re=0.  
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Figure 7.20: Variation of the dimensionless mid width  velocity component V with 

the dimensionless X coordinate at different Hartman numbers α=1 and Re=0. 
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Figure 7.21: Variation of the dimensionless pressure P with the dimensionless X 

coordinate at different Hartman numbers α=1 and Re=0.  
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Figure 7.22: Variation of the dimensionless mid length steady axial velocity U with 

the dimensionless Y coordinate at different Hartman numbers α=1 and Re=0.  
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Figure 7.23: Transient behavior of the mid length centerline axial velocity U at 

different Hartman numbers α=1 and Re=0.  

 

 

  

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 
0 

0.005 

0.01 

0.015 

0.02 

0.025 

0.03 

0.035 

0.04 

0.045 

Dimensionless Time 

D
im

e
n

s
io

n
le

s
s
 A

x
ia

l 
V

e
lo

c
it
y
 U

 

Ha=0,5,10,15,20 



www.manaraa.com

 87 

 

Figure 7.24: Transient behavior of the mid length centerline velocity component V 

at different Hartman numbers α=1 and Re=0. 
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Figure 7.25: Transient behavior of the mid length centerline axial velocity U at 

different Hartman numbers for AC pumping α=1, Re=0, St=10 and φ=0.  
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Figure 7.26 Transient behavior of the mid length centerline velocity component V 

at different Hartman numbers for AC pumping α=1, Re=0, St=10 and φ=0.  
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Figure 7.27: Transient behavior of the dimensionless pressure at different Hartman 

numbers for AC pumping α=1, Re=0, St=10 and φ=0.  
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Figure 7.28: Transient behavior of the axial velocity u at different Stanton numbers 

for AC pumping with α=1, Re=0, Ha=0 and φ=0.  
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Figure 7.29: Transient behavior of the dimensionless velocity v at different Stanton 

numbers with α=1, Re=0, Ha=0 and φ=0. 
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Figure 7.30: Transient behavior of the dimensionless pressure at different Stanton 

numbers with α=1, Re=0, Ha=0 and φ=0. 
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Figure 7.31: Transient behavior of the axial velocity u at different phase angles with 

α=1, Re=0, Ha=0 and St=10. 
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Figure 7.32: Comparison of transient velocity for fully developed flow and 

developing flow solutions with α=1, Re=0, Ha=10, St=10 and φ=0. 
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Table 7.2 Electrical conductivity effect (B=0.5 T and V=10 volts) 

fluid Electrical 

conductivity 

Maximum 

velocity 

(m/s) 

Pressure 

difference 

(Pa) 

Flow rate 

(μl/min) 

Saline solution 2.2e-3 7e-6 0.323 0.002 

Sea water 4 0.0122 587 4.1 

 

 

Table 7.3 Voltage effect (sea water with σ=4 siemens/m and B=0.5T) 

Voltage 

(volts) 

Maximum velocity 

(m/s) 

Pressure difference 

(Pa) 

Flow rate 

(μl/min) 

0.5 0.003 146.7 1.03 

5 0.0305 1467 10.3 

 

 

Table 7.4 Magnetic flux effect (sea water with σ=4 siemens/m and V=10 volts) 

Magnetic flux 

density 

(Tesla) 

Maximum velocity 

(m/s) 

Pressure difference 

(Pa) 

Flow rate 

(μl/min) 

0.1 0.0024 117.3 0.82 

0.5 0.0122 587 4.1 
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Table 7.5 Aspect ratio effect (sea water with σ=4 siemens/m, V=10 volts and 

B=0.5T) 

Aspect ratio 

(height/width) 

Maximum 

velocity 

(m/s) 

Pressure 

difference 

(Pa) 

Flow rate 

(μl/min) 

0.5 0.0122 587 4.1 

1 0.0315 585 21.27 

 

In table (7.2) low and medium values of electrical conductivity for two different fluids 

are taken to show their effect on the steady flow velocity. It is seen that using high conducting 

fluid yields high flow rate with high pressure. Tables (7.3) and (7.4) show the effect of 

voltage and magnetic flux on the flow rate and pressure difference for sea water. It is noticed 

that controlling the voltage and magnetic flux will allow to control the flow rate and pressure 

with linear relation between them. 

The effect of aspect ratio (height/width) is shown in table (7.5). It is seen that the flow 

rate increases as the height of the channel relative to width increases and a suitable value of 

the aspect ratio must be selected to predict the desired flow rate. From figure (7.19) it is 

noticed that for a low conductive liquids the suitable channel length can be taken about 100 

times of the channel width to reach the fully developed region. 

The relations between the flow rate, pressure difference and the induced electric current 

are shown in figures (7.33) and (7.34). In these figures the results were obtained for sea water 

by changing the magnetic flux density B, or the applied voltage with keeping constant other 

parameters ( h=75μm, w=150μm, L=22mm and σ=4 siemens/m). It is seen from this figure 

that increasing the current will increase the flow rate and the pressure difference linearly. 
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Figure 7.33: Variation of pressure difference with flow rate-system curve 

(h=75μm, w=150μm, L=22mm and σ=4 siemens/m) 
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Figure 7.34: Variation of pressure difference with flow rate-system curve 

(h=75μm, w=150μm, L=22mm and σ=4 siemens/m) 
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Chapter 8 
Conclusions and Recommendations 

 

     Analytical and numerical methods to predict the fully developed flow velocity and 

temperature distribution in a magnetohydrodynamic (MHD) micropump has been presented. 

The analytical results are found in very good agreement with the numerical results. Also a 

numerical method to predict the velocity distribution in a developing magnetohydrodynamic 

(MHD) micropump flow has been presented. The effect of fluctuating Lorentz force on the 

Ac magnetohydrodynamic micropump flow is studied for both developing and fully 

developed flow 

 In this study, the effect of Hartman number, aspect ratio, Prandtl number, Eckert 

number, Stanton number and phase angle on the transient velocity and temperature profiles 

was investigated. The following conclusions can be summarized in the following points: 

1- It is seen that at low Hartman number the velocity profiles in the MHD 

micropump using Lorentz force are parabolic, and these profiles are similar to 

that produced by external pressure gradient. 

2- It is seen that the velocity decreases as the Hartmann number increases, which 

means that a slightly conductive fluid is enough to propel the fluid 

3- It is seen from the transient behavior that the effect of increasing Ha is to decrease 

the time required to reach steady state.  

4- It is seen that that the heat generated from the electric current and magnetic flux 

will cause an increase of the temperature from the initial state, and the same effect 

of Ha on the velocity profile is observed on temperature profile. 
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5- It is seen that the velocity and temperature increases as the aspect ratio increases. 

This means that controlling the conduit width will allow to control the velocity 

and temperature. 

6- It is noticed that controlling the flow and the temperature can be achieved by 

controlling the potential difference, the magnetic flux, aspect ratio and by a good 

choice of the electrical conductivity. 

7- It is observed that the temperature increases and the time required to reach steady 

state increases as Pr and Eckert number ( wpTCuEc 2
0 ) increases.  

8- It is noticed in AC pumping that the velocity and temperature have pulsating 

profiles. And as the Stanton number increases the pulsed volume decreases. This 

means that at high frequency, the pulsed volume is small which yields a 

continuous flow instead of pulsating flow.  

9- It is noticed also that the effect of increasing St is to increase the time required to 

reach steady state. 

10- The magnitude and direction of the flow can be controlled by the phase shift 

between the electrical and magnetic fields. It is noticed that at phase angle =0, 

the fluid flows in positive direction while it flows in the opposite direction at 

=180o   

The following recommendations can be followed in future work: 

1- It is recommended to take into account the effect of the different parameters 

discussed previously on the flow and temperature in the design of the AC MHD 

micropump. 
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2- It is recommended to take into account the temperature rise and it's effect on the 

velocity profile in the design of the AC MHD micropump. 

3- It is recommended to solve the same problem with variable properties, especially 

the viscosity. 

4- It is recommended to solve the same problem for a three-dimensional laminar 

flow. 
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Appendices 
Appendix A 

Programs 

A-1 ADI numerical technique  

   The following  program is performed to solve the 2-d navier stockes equations and 

energy equation in an incompressible viscous fully developed flow in a 

Magnetohydrodynamic micropump  with Fluctuating Lorentz force using a numerical 

marching technique   which is the ADI method. 

 

%%==============================================================

========= 

%       function [x] = thomas(a,b,c,cwrk,r,n) 

%----------------------------------------------------------------------- 

% solve tridiagonal system with thomas algorithm.  tri(a,b,c)*x = r. 

% solution returned in r array. 

% input 

%   a,b,c   arrays containing the tridiag matrix (these are not changed) 

%   r       array containing the right hand side (destroyed in call) 

%   n       size of the system 

% output 

%   x       solution returned in x array 

% work 

%   cwrk    work array so that original matrix is not destroyed 

%----------------------------------------------------------------------- 

  

%----------------------------------------------------------------------- 

% forward elimination 

clear 

 alpha=1; 

n=19; 

dz=alpha/20; 

dy=1/20; 

dt=.05; 

ke=101; 

%B=0.44; 

%segma=2.2e-3; 

%V=2; 

%mu=1.09e-3; 

%den=1025; 

%nu=mu/den; 

%Ha=B*w*sqrt(segma/mu); 

%Ti=300; 

Ha=10; 

st=10; 
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phi=0; 

pr=0.1; 

pstar=0; 

Ec=0.05; 

N=1-pstar; 

for k=1:ke 

t(k)=dt*(k-1); 

end 

for j=1:21 

        for i=1:21 

            u(i,j,1)=0; 

        end 

    end 

    %----------------- 

for k=1:ke 

    for i=1:21 

            u(i,1,k)=0; 

            u(i,21,k)=0; 

        end 

    end 

    %------------------- 

    for k=1:ke 

    for j=1:21 

            u(1,j,k)=0; 

            u(21,j,k)=0; 

        end 

    end 

    %--------------- 

for k=2:ke 

    %%%%%%%%%%%% 

   chek=(-1)^k; 

    if chek>0; 

    for j=2:20 

        %------------ 

a(1,j,k)=0; 

c(n,j,k)=0; 

for i=1:n 

    b(i,j,k)=-(1+2*dt/(st^2*dy^2)+Ha^2*(dt/st^2)*sin(2*pi*t(k))^2); 

end 

for i=2:n 

    a(i,j,k)=dt/(st^2*dy^2); 

end 

for i=1:n-1 

    c(i,j,k)=dt/(st^2*dy^2); 

end 

%----------- 

end 
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for j=2:20 

    for i=1:21 

u(i,j,1)=0; 

end 

end 

     for j=2:20 

    for i=1:n 

    r(i,j,k)=-(u(i+1,j,k-1)+(dt/st^2*dz^2)*(u(i+1,j+1,k-1)-2*u(i+1,j,k-1)+u(i+1,j-1,k-

1))+(dt/st^2)*(sin(2*pi*t(k))*sin(2*pi*t(k)+phi)-pstar)); 

end 

end 

    %------------------- 

    for j=2:20 

        %------------------------ 

fac(1,j,k)   = 1.0/b(1,j,k); 

cwrk(1,j,k) = c (1,j,k)* fac(1,j,k); 

r(1,j,k)    = r(1,j,k) * fac(1,j,k); 

  

for i = 2:n 

    fac (i,j,k)    = 1.d0/( b(i,j,k) - a(i,j,k)*cwrk(i-1,j,k) ); 

  

    cwrk(i,j,k) =                   c (i,j,k)  * fac(i,j,k); 

    r(i,j,k)    = ( r(i,j,k) - r(i-1,j,k) * a (i,j,k)) * fac(i,j,k); 

end 

%----------------------------------------------------------------------- 

% back substitution 

% put solution into x array, r(n) already has solution 

x(n,j,k) = r(n,j,k); 

for i = n-1:-1:1 

    x(i,j,k) = r(i,j,k) - cwrk(i,j,k)*x(i+1,j,k); 

end 

%----------------------------------------------------------------------- 

% end of thomas 

end 

for j=2:20 

    for i=1:n 

        u(i+1,j,k)=x(i,j,k); 

    end 

end 

%-------------------------------------------------------------- 

%  End of the first step of the ADI method in i with different j 

else 

for i=2:20 

        %------------ 

a(i,1,k)=0; 

c(i,n,k)=0; 

for j=1:n 

  



www.manaraa.com

 110 

 

    b(i,j,k)=-(1+2*dt/(st^2*dz^2)+Ha^2*(dt/st^2)*sin(2*pi*t(k))^2); 

end 

for j=2:n 

    a(i,j,k)=dt/(st^2*dz^2); 

end 

for j=1:n-1 

    c(i,j,k)=dt/(st^2*dz^2); 

end 

%----------- 

end 

 for i=2:20 

    for j=1:21 

%r(i,j,1)=0; 

u(i,j,1)=0; 

end 

end 

 %--------------------------------------- 

   for i=2:20 

    for j=1:n 

    r(i,j,k)=-(u(i,j+1,k-1)+(dt/st^2*dy^2)*(u(i+1,j+1,k-1)-2*u(i,j+1,k-1)+u(i-1,j+1,k-

1))+(dt/st^2)*(sin(2*pi*t(k))*sin(2*pi*t(k)+phi)-pstar)); 

end 

end 

    %------------------- 

    for i=2:20 

        %------------------------ 

fac(i,1,k)   = 1.0/b(i,1,k); 

cwrk(i,1,k) = c (i,1,k)* fac(i,1,k); 

r(i,1,k)    = r(i,1,k) * fac(i,1,k); 

  

for j = 2:n 

    fac (i,j,k)    = 1.d0/( b(i,j,k) - a(i,j,k)*cwrk(i,j-1,k) ); 

  

    cwrk(i,j,k) =                   c (i,j,k)  * fac(i,j,k); 

    r(i,j,k)    = ( r(i,j,k) - r(i,j-1,k) * a (i,j,k)) * fac(i,j,k); 

end 

%----------------------------------------------------------------------- 

% back substitution 

% put solution into x array, r(n) already has solution 

x(i,n,k) = r(i,n,k); 

for j = n-1:-1:1 

    x(i,j,k) = r(i,j,k) - cwrk(i,j,k)*x(i,j+1,k); 

end 

%----------------------------------------------------------------------- 

% end of thomas 

end 

for i=2:20 
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    for j=1:n 

        u(i,j+1,k)=x(i,j,k); 

    end 

end 

%----------------------------------------------- 

end 

end 

%.................................................... 

for k=1:ke 

    for j=1:21; 

        for i=1:21; 

            u1(i,j,k)=u(i,j,k); 

        end 

    end 

end 

%########################################################### 

% Now solve for the temperature profile 

%############################################################## 

for k=1:ke 

    for j=1:21 

        for i=1:21 

           s(i,j,k)=Ha^2*Ec*((sin(2*pi*t(k)+phi)/Ha^2)+u1(i,j,k)*sin(2*pi*t(k)))^2; 

        end 

    end 

end 

for j=1:21 

        for i=1:21 

            th(i,j,1)=0; 

        end 

    end 

    %----------------- 

for k=1:ke 

    for i=1:21 

            th(i,1,k)=0; 

            th(i,21,k)=0; 

        end 

    end 

    %------------------- 

    for k=1:ke 

    for j=1:21 

            th(1,j,k)=0; 

            th(21,j,k)=0; 

        end 

    end 

    %--------------- 

for k=2:ke 
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    %%%%%%%%%%%% 

   chek=(-1)^k; 

    if chek>0; 

    %%%%%%%%%%%% 

     for j=2:20 

        %------------ 

a(1,j,k)=0; 

c(n,j,k)=0; 

for i=1:n 

    b(i,j,k)=-(1+2*dt/(st^2*pr*dy^2)); 

end 

for i=2:n 

    a(i,j,k)=dt/(st^2*pr*dy^2); 

end 

for i=1:n-1 

    c(i,j,k)=dt/(st^2*pr*dy^2); 

end 

%----------- 

end 

 for j=2:20 

    for i=1:21 

%r(i,j,1)=0; 

th(i,j,1)=0; 

end 

end 

 for j=2:20 

    for i=1:n 

    r(i,j,k)=-(th(i+1,j,k-1)+(dt/(st^2*pr*dz^2))*(th(i+1,j+1,k-1)-2*th(i+1,j,k-1)+th(i+1,j-1,k-

1))+s(i+1,j,k)*dt/st^2); 

end 

end 

    %------------------- 

    for j=2:20 

        %------------------------ 

fac(1,j,k)   = 1.0/b(1,j,k); 

cwrk(1,j,k) = c (1,j,k)* fac(1,j,k); 

r(1,j,k)    = r(1,j,k) * fac(1,j,k); 

  

for i = 2:n 

    fac (i,j,k)    = 1.d0/( b(i,j,k) - a(i,j,k)*cwrk(i-1,j,k) ); 

  

    cwrk(i,j,k) =                   c (i,j,k)  * fac(i,j,k); 

    r(i,j,k)    = ( r(i,j,k) - r(i-1,j,k) * a (i,j,k)) * fac(i,j,k); 

end 

%----------------------------------------------------------------------- 

% back substitution 

% put solution into x array, r(n) already has solution 

x(n,j,k) = r(n,j,k); 
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for i = n-1:-1:1 

    x(i,j,k) = r(i,j,k) - cwrk(i,j,k)*x(i+1,j,k); 

end 

%----------------------------------------------------------------------- 

% end of thomas 

end 

for j=2:20 

    for i=1:n 

        th(i+1,j,k)=x(i,j,k); 

    end 

end 

%-------------------------------------------------------------- 

%  End of the first step of the ADI method in i with different j 

else 

for i=2:20 

        %------------ 

a(i,1,k)=0; 

c(i,n,k)=0; 

for j=1:n 

    b(i,j,k)=-(1+2*dt/(st^2*pr*dz^2)); 

end 

for j=2:n 

    a(i,j,k)=dt/(st^2*pr*dz^2); 

end 

for j=1:n-1 

    c(i,j,k)=dt/(st^2*pr*dz^2); 

end 

%----------- 

end 

 for i=2:20 

    for j=1:21 

%r(i,j,1)=0; 

th(i,j,1)=0; 

end 

end 

 %--------------------------------------- 

 for i=2:20 

    for j=1:n 

    r(i,j,k)=-(th(i,j+1,k-1)+(dt/(st^2*pr*dy^2))*(th(i+1,j+1,k-1)-2*th(i,j+1,k-1)+th(i-1,j+1,k-

1))+s(i,j+1,k)*dt/st^2); 

end 

end 

    %------------------- 

    for i=2:20 

        %------------------------ 

fac(i,1,k)   = 1.0/b(i,1,k); 

cwrk(i,1,k) = c (i,1,k)* fac(i,1,k); 

r(i,1,k)    = r(i,1,k) * fac(i,1,k); 
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for j = 2:n 

    fac (i,j,k)    = 1.d0/( b(i,j,k) - a(i,j,k)*cwrk(i,j-1,k) ); 

  

    cwrk(i,j,k) =                   c (i,j,k)  * fac(i,j,k); 

    r(i,j,k)    = ( r(i,j,k) - r(i,j-1,k) * a (i,j,k)) * fac(i,j,k); 

end 

%----------------------------------------------------------------------- 

% back substitution 

% put solution into x array, r(n) already has solution 

x(i,n,k) = r(i,n,k); 

for j = n-1:-1:1 

    x(i,j,k) = r(i,j,k) - cwrk(i,j,k)*x(i,j+1,k); 

end 

%----------------------------------------------------------------------- 

% end of thomas 

end 

for i=2:20 

    for j=1:n 

        th(i,j+1,k)=x(i,j,k); 

    end 

end 

%----------------------------------------------- 

end 

end 

%############################################################# 

for i=1:21 

    y(i)=(i-1)*dy; 

end 

for j=1:21 

    z(j)=(j-1)*dz; 

end 

  

%======================================================== 

% to plot the centerline velocity and temperature with time: 

for k=1:ke 

    uk(k)=u1(11,11,k); 

    thk(k)=th(11,11,k) ; 

    sk(k)=s(11,11,k); 

end 
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A-2 SIMPLE algorithm 

   The following  program is performed to solve the 2-d navier stockes equations in an 

incompressible viscous flow in a Magnetohydrodynamic micropump  with Fluctuating 

Lorentz force using a numerical marching technique   which is the PRESSURE 

CORRECTION METHOD 

%------------------------------------------------------------------- 

%   1) set the dimensionless parameters and other required quantites: 

clear 

w=1; 

l=100; 

nx=100; 

ny=10; 

ke=50; 

dt=0.1; 

dx=(l/w)/nx; 

dy=1/ny; 

Re=0; 

Ha=10; 

st=10; 

phi=0; 

a=(2*dt/(st^2*dx^2))+(2*dt/(st^2*dy^2)); 

b=-dt/(st^2*dx^2); 

c=-dt/(st^2*dy^2); 

%------------------------------------------------------------------- 

%   2) Guess values of P* at all the pressure grid points. 

for k=1:ke  

            t(k)=dt*(k-1); 

for i=1:2:2*nx+1 

    for j=1:2:2*ny+1 

   pst(i,j,k)=0; 

end 

end 

for i=3:2:2*nx+1; 

        for j=1:2:2*ny+1 

            pr(i,j,k)=0; 

        end 

    end 

end 

%  initial conditions of the velocities at time equal zero(k=1) 

for i=2:2:2*nx 

    for j=1:2:2*ny+1 

        ust(i,j,1)=0; 

    end 

end 

for i=1:2:2*nx+1 

    for j=2:2:2*ny 
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        vst(i,j,1)=0; 

    end 

end 

%--------- 

for k=2:ke 

    for m=1:100 

    % Boundary conditions of the velocities: 

 % Boundary conditions at the left 

for j=1:ny; 

       vst(1,2*j,k)=0; 

       ust(2,1,k)=0; 

       ust(2,2*j+1,k)=0; 

   end 

% Boundary conditions at the bottom 

for i=1:nx-1; 

       ust(2*i+2,1,k)=0; 

       vst(3,2,k)=0; 

       vst(2*i+3,2,k)=0; 

   end 

% Boundary conditions at the top 

for i=1:nx-1; 

       ust(2*i+2,2*ny+1,k)=0; 

       vst(3,2*ny,k)=0; 

       vst(2*i+3,2*ny,k)=0; 

   end 

   % Boundary conditions at the right 

for j=1:ny; 

       vst(2*nx+1,2*j,k)=0; 

        

   end 

%-------------------------------------------------------------------- 

%    3) Solve for u*(n+1) and v*(n+1) at all appropriate internal grid points. 

   %     

   

%------Calculate the star velocities in the interior points: 

for i=4:2:2*nx-2; 

    for j=3:2:2*ny-1; 

         

        if i==2*nx-2 

         % backword finite divided difference 

  vsta(i,j,k-1)=(vst(i-1,j-1,k-1)+vst(i+1,j+1,k-1)+vst(i-1,j+1,k-1)+vst(i+1,j-1,k-1))/4; 

       Ast(i,j,k-1)=Re*(ust(i,j,k-1)*((ust(i,j,k-1)-ust(i-2,j,k-1))/dx)+vsta(i,j,k-1)*((ust(i,j+2,k-

1)-ust(i,j-2,k-1))/(2*dy)))-(ust(i,j,k-1)-2*ust(i-2,j,k-1)+ust(i-4,j,k-1))/(dx^2)-(ust(i,j+2,k-1)-

2*ust(i,j,k-1)+ust(i,j-2,k-1))/dy^2; 

       ust(i,j,k)=(1-((dt/st^2)*Ha^2*sin(2*pi*t(k-1))^2))*ust(i,j,k-1)-Ast(i,j,k-

1)*(dt/st^2)+(dt/st^2)*sin(2*pi*t(k-1))*sin(2*pi*t(k-1)+phi)-(dt/(st^2*dx))*(pst(i+1,j,k-1)-

pst(i-1,j,k-1));   
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else 

    vsta(i,j,k-1)=(vst(i-1,j-1,k-1)+vst(i+1,j+1,k-1)+vst(i-1,j+1,k-1)+vst(i+1,j-1,k-1))/4; 

           Ast(i,j,k-1)=Re*(ust(i,j,k-1)*((ust(i+2,j,k-1)-ust(i-2,j,k-1))/2*dx)+vsta(i,j,k-

1)*((ust(i,j+2,k-1)-ust(i,j-2,k-1))/(2*dy)))-(ust(i+2,j,k-1)-2*ust(i,j,k-1)+ust(i-2,j,k-

1))/(dx^2)-(ust(i,j+2,k-1)-2*ust(i,j,k-1)+ust(i,j-2,k-1))/dy^2; 

       ust(i,j,k)=(1-((dt/st^2)*Ha^2*sin(2*pi*t(k-1))^2))*ust(i,j,k-1)-Ast(i,j,k-

1)*(dt/st^2)+(dt/st^2)*sin(2*pi*t(k-1))*sin(2*pi*t(k-1)+phi)-(dt/(st^2*dx))*(pst(i+1,j,k-1)-

pst(i-1,j,k-1));   

  

end 

end 

end 

%----- 

for i=3:2:2*nx-1; 

    for j=4:2:2*ny-2; 

        

         

       usta(i,j,k-1)=(ust(i+1,j+1,k-1)+ust(i-1,j-1,k-1)+ust(i+1,j-1,k-1)+ust(i-1,j+1,k-1))/4; 

Bst(i,j,k-1)=Re*(usta(i,j,k-1)*((vst(i+2,j,k-1)-vst(i-2,j,k-1))/2*dx)+vst(i,j,k-

1)*((vst(i,j+2,k-1)-vst(i,j-2,k-1))/(2*dy)))-(vst(i+2,j,k-1)-2*vst(i,j,k-1)+vst(i-2,j,k-

1))/(dx^2)-(vst(i,j+2,k-1)-2*vst(i,j,k-1)+vst(i,j-2,k-1))/dy^2; 

vst(i,j,k)=vst(i,j,k-1)-Bst(i,j,k-1)*(dt/st^2)-(dt/(st^2*dy))*(pst(i,j+1,k-1)-pst(i,j-1,k-1)); 

  

end 

end 

%----------------------------------------------------------------------- 

%   substitute the values of ust, and vst into pressure correction equation, and splve 

% for pr at all interior grid points. (use Relaxation Technique). 

%------------------ 

 %-----------------the first of relaxation (iteration) 

for n=1:100 

    %-------------------------------------- 

for i=3:2:2*nx-1; 

        for j=3:2:2*ny-1; 

            if i==2*nx-1 

              d(i,j,k)=(vst(i,j+1,k)-vst(i,j-1,k))/dy;   

            else 

            d(i,j,k)=(ust(i+1,j,k)-ust(i-1,j,k))/dx+(vst(i,j+1,k)-vst(i,j-1,k))/dy; 

        end 

    end 

end 

%------------------------------ 

%%%%%---------------------------- 

       for j=1:2:2*ny+1 

        pr(1,j,k)=0; 

    end 

    for i=3:2:2*nx-3 
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     pr(i,3,k)=(-1/(a+c))*(b*(pr(i+1,3,k)+pr(i-1,3,k))+c*pr(i,5,k)+d(i,3,k)); 

     pr(i,1,k)=pr(i,3,k); 

     pr(i,2*ny-1,k)= (-1/(a+c))*(b*(pr(i+1,2*ny-1,k)+pr(i-1,2*ny-1,k))+c*pr(i,2*ny-

3,k)+d(i,2*ny-1,k)); 

     pr(i,2*ny+1,k)=pr(i,2*ny-1,k); 

     for j=5:2:2*ny-3 

       pr(i,j,k)=(-1/a)*(b*(pr(i+2,j,k)+pr(i-2,j,k))+c*(pr(i,j+2,k)+pr(i,j-2,k))+d(i,j,k)); 

   end 

end 

pr(2*nx-1,3,k)=(-1/(a+b+c))*(b*pr(i-2,j,k)+c*pr(i,j+2,k)+d(i,j,k)); 

pr(2*nx-1,2*ny-1,k)=  (-1/(a+b+c))*(b*pr(i-2,j,k)+c*pr(i,j-2,k)+d(i,j,k)); 

pr(2*nx-1,1,k)=pr(2*nx-1,3,k); 

pr(2*nx-1,2*ny+1,k)=pr(2*nx-1,2*ny-1,k); 

for j=5:2:2*ny-3 

    pr(2*nx-1,j,k)=(-1/a)*(b*(pr(i+2,j,k)+pr(i-2,j,k))+c*(pr(i,j+2,k)+pr(i,j-2,k))+d(i,j,k)); 

     

end 

for j=1:2:2*ny+1 

    pr(2*nx+1,j,k)=2*pr(2*nx-1,j,k)-pr(2*nx-3,j,k); 

end 

%pr 

%end of relaxation 

end 

% 

  %----------calculate the pressure 

 for i=1:2:2*nx+1 

          for j=1:2:2*ny+1 

              p(i,j,k)=pr(i,j,k)+pst(i,j,k-1); 

              pst(i,j,k-1)=p(i,j,k); 

          end 

      end 

      for i=1:nx 

    for j=1:ny+1 

        xu(i)=dx*(i-1); 

        yu(j)=dy*(j-1); 

        u(i,j,k)=ust(2*i,2*j-1,k); 

    end 

end 

for i=1:nx+1 

    for j=1:ny 

         xv(i)=dx*(i-1); 

        yv(j)=dy*(j-1); 

        v(i,j,k)=vst(2*i-1,2*j,k); 

    end 

end 

for i=1:nx+1 

    for j=1:ny+1 

         xp(i)=dx*(i-1); 
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        yp(j)=dy*(j-1); 

        pf(i,j,k)=p(2*i-1,2*j-1,k); 

    end 

end 

               

              end 

              

          end 

          %=============================== 

        for k=1:ke;   

            

        uk(k)=u(nx-4,ny/2,k); 

     

      vk(k)=v(nx-4,ny/2,k); 

    

        pk(k)=pf(nx-4,ny/2,k); 

    end 
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 وى لورنتزقنمذجة و تصميم مضخة كهرومغناطيسية دقيقة ذات تيار متناوب باستعمال 
 

 اعداد
 مُصطفى رشيد عبد الله

 
 

 المشرف
 الدّكتور حمزه الدويري

 

Arabic Summary 
 ملخّص

 
. تدار المضخة  (MHD Micropump)تم عرض نموذج نظري يصف مضخة كهرومغناطيسية 

دي عليه، ز والتي تظهر كنتيجة للتفاعل بين مجال كهربائي ومجال مغناطيسي عموباستخدام قوة لورينت
 ز الناتجة لضخ سوائل ذات موصلية كهربائية داخل قناة دقيقة الأبعاد.لورينتوتستخدم قوة 

ت مل ولتوزيع درجاتم وضع نموذج رياضي يصف المرحلة الانتقالية لجريان رقائقي متطور بالكا
 ز.ينتلورالحرارة، حيث تم وضع حلول تحليلية وأخرى عددية للسرعة ودرجة الحرارة تحت تأثير قوة 

 (Eigen Function Expansion )تم وضع حلول للمعادلات المتحكمة بشكل تحليلي باستخدام طريقة 
 .(ADI Finite Difference)وحلول بشكل عددي باستخدام طريقة الفرق المحدود 

لعوامل المختلفة العددية والتحليلية. تم دراسة تأثير مجموعة من ا النتائج بين اجيد اوجد أن هناك توافق
ع للعرض، ة الانتقالية والثابتة للسرعة ودرجة الحرارة وهذه العوامل هي: نسبة الإرتفالعلى المرح

 .Eckert، ورقم Prandtl، ورقم  Hartmannورقم 
فرق  ج أن السيطرة على السرعة ودرجة الحرارة يمكن أن يتحقق من خلال السيطرة علىبينت النتائ

 الجهد، والتدفق المغناطيسي، والإختيار الجيد للموصلية الكهربائية.
تطور تم أيضا في هذه الدراسة وضع حلول عددية للمرحلة الإنتقالية لجريان رقائقي في مرحلة ال

 . (SIMPLE)وخوارزمية  (Finite Difference)باستخدام طريقة الفرق المحدود 
اة. وقد على منحنى السرعة الإنتقالية وعلى طول منطقة المدخل للقن Hartmannتم دراسة تأثير رقم 

ول طستؤدي إلى السيطرة على  وجد أن السيطرة على الموصلية الحرارية وشدة التدفق المغناطيسي
 نطقة المدخل.م

الجريان  ز المترددة على مضخة كهرومغناطيسية ذات تيار متناوب لحالتيتلورينوتم دراسة تأثير قوة 
ابض المتطور والجريان في مرحلة التطور. وقد وجد أنه عند استخدام تردد عالي يكون الحجم الن

ان يمكن إلى جريان مستمر بدلا من جريان متردد. وجد أيضا أن قيمة واتجاه الجري ذلك ويؤدي اصغير
  خلال السيطرة على تغيير المرحلة بين المجالين الكهربائي والمغناطيسي.  التحكم بها من 

 


