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MODELLING AND DESIGN OF AN AC MAGNETOHYDRODYNAMIC
MICROPUMP USING LORENTZ FORCE

By
Mustafa Rashied Abdullah

Supervisor
Dr. Hamzeh Duwairi

Abstract

A theoretical model describing a magnetohydrodynamic (MHD) micropump is
presented. The micropump is driven by the Lorentz force which is induced as a result of
interaction between an applied electric field and a perpendicular magnetic field. The Lorentz
force is used to pump an electrically conducting liquids along a microchannel.

A two-dimensional transient fully developed laminar flow and temperature
distribution is modeled, where the velocity and temperature profiles under the effect of
Lorentz force are solved both analytically and numerically. The governing equations are
solved analytically by an eigenfunction expansion method, and numerically by a finite-
difference (ADI) method. The numerical and analytical results are found to be in good
agreement with each other. The effect of different parameters on the transient and steady
flow velocity and temperature, such as aspect ratio, Hartman number, Prandtl number, and
Eckert number is studied. The results obtained showed that controlling the flow and the
temperature can be achieved by controlling the potential difference, the magnetic flux, and
by a good choice of the electrical conductivity.

The transient, laminar, incompressible, and developing flow equations are
numerically solved using the finite difference method and the SIMPLE algorithm. The effect
of Hartman number on the transient velocity profile and the entrance region length is studied.
Itis found that controlling the electrical conductivity and magnetic flux density will allow
to control the entrance region length.

The effect of fluctuating Lorentz force on the AC magnetohydrodynamic micropump is
studied for both developing and fully developed flow. It was found that at high frequency,
the pulsed volume is small, which yields a continuous flow instead of pulsating flow. The
magnitude and direction of the flow can be controlled by the phase shift between the
electrical and magnetic fields.
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Chapter 1
Introduction

1.1 Micro-Electromechanical systems (MEMS)

Micro-electromechanical systems (MEMS) is a technology used to create small
integrated devices or systems that combine mechanical and electrical components. They can
range in size from a few micrometers to millimetres. These systems have the ability to sense,
control and actuate on the micro scale, and generate effects on the macro scale. The
advantages following from the use of microsystems compared to macrosystems are:

1. Smaller size of the devices (bringing analysis closer to the process)
2. Reduced fabrication costs (depending on the volume of production)

3. Lower energy consumption (due to smaller size of the device, provides suitability

for wireless solutions)

4. Smaller volumes of expensive reagents (or also suitable for situations, where

sample is not available in large enough volume)

5. Better performance
In the most general form, MEMS consist of mechanical microstructures, microsensors,
microactuators and microelectronics, all integrated onto the same silicon chip. Microsensors
detect changes in the system’s environment by measuring mechanical, thermal, magnetic,
chemical or electromagnetic information or phenomena. Microelectronics process this
information and signal the microactuators to react and create some form of changes to the

environment.
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1.2 Microfluidics

Micro-fluidic systems were one of MEMS developed in recent years. In these years,
many papers that studied very small devices controlling or sensing flow named microflow
devices have been published.

Microflow systems consist of nozzles, pumps, reservoirs, mixers, valves, sensors etc.,
can be used for many applications including drug dispensing, ink-jet printing and general
transport, analysis and production of liquids, gases and their mixtures. In addition, the

medical industry has shown interest in microfluidics technology.

1.3 Micropumps

One of the most common devices in microfluidic systems is the micro pump, which plays
an important role in a micro-fluidic system, and can be used in many application fields, such
as fluid distribution, medical transportation, and micro cooling of electronic components.

Clearly, the need to precisely control gas and fluid flow is critical for biomedical systems.
Hence, there have been many efforts to develop low-cost high-precision microneedles,
microfilters, microvalves and micropumps.

Several methods of microactuation have been used to drive micropumps. They depend
on electrostatic, magnetic, and piezoelectric forces.

Figure (1.1) illustrates the classification of micropumps. The typical operation range of
displacement micropumps lies between 10 pl/min and several milliliters per minute. For flow
rates less than 10 ul/min, alternative dynamic pumps or non-mechanical pumps are needed

for an accurate control of these small fluid amounts .
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Figure 1.1: Classification of micropumps

Mechanical pumps can be divided according to the principles by which mechanical

Reciprocating pumps

energy is continuously added to increase the fluid velocities within the pump.

energy is applied to the fluid. Mechanical pumps are divided into two major categories:
displacement pumps and dynamic pumps. In displacement pumps, such as peristaltic,
reciprocating and rotary pumps, energy is periodically added by the application of force to a

movable boundary. In dynamic pumps, such as ultrasonic pumps and centrifugal pumps,

A reciprocating pump consists of a pressure chamber with an actuated diaphragm and

phase, pumped out. The check valves prevent flow to the wrong direction.

two check valves. The actuator can be a piezoelectric, pneumatic or electrostatic actuator,

for example. In the first phase of pumping, liquid is sucked into the chamber and in the next
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A valve-less reciprocating pump contains diffuser/nozzle units instead of check valves.
In valve-less reciprocating valves, there is always flow to both directions but the parameters
of the diffusers and nozzles determine the direction and volume of the net flow. The

operating principle of the valve-less micropump is presented in Figure (1.2).

SUPPLY MODE PUMP MODE

Inlet Qutlet Inlet Outlet

——

A0S RS HOTRS R A s e S
9, * * * chamber volume =~ ° 4"_ Vo Ul <—' sOgee e
e . ‘ Decreasing
> ML P I\] ey o -\I chamber volume * r\l
Diffuser Nozzle Nozzle Diffuser
action (G ERE 2 action action |Di|<10q action

Figure 1.2: Operating principle of diffuser based micropump (Woias 2005)
Peristaltic pumps
In peristaltic pumps, the pumping concept is based on the peristaltic motion of the pump
chambers which squeezes the fluid in the desired direction. Peristaltic pumps need three or

more pump chambers with actuating membrane.

Rotary pumps

In rotary pumps, the liquid is actuated using rotating gears which mesh together. One
gear is turned by an external or internal actuator and it drives the other gear. The space
between the gear teeth moves the liquid through the pump chamber.The operation principle

can be seen in Figure (1.3)

www.manaraa.com



3

Figure 1.3: An operation principle of a gear pump (Nguyen et al, 2002)

1.3.2 Non-mechanical micropumps

Non-mechanical micropumps add momentum to the fluid by directly converting non-
mechanical energy into kinetic energy without mechanical movement of a structure. While
mechanical pumping is mostly used in macroscale pumps and micropumps with a relatively
large size and high flow rates, the non-mechanical pumps have advantages when used in the
microscale. The driving forces can be electric, magnetic, thermal, chemical or surface
tension forces. The non-mechanical micropumps can be categorized into
electrohydrodynamic (EHD) pumps, electrokinetic pumps, and magnetohydrodynamic

(MHD) pumps.

Electro-hydro dynamic (EHD) pumps

Electrohydrodynamic pumps are based on electrostatic forces acting on nonconductive
fluids. EHD pumps can be categorized as EHD injection pumps (static) and EHD induction

pumps (dynamic).
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Electrokinetic pump

Electrokinetic pumps use a static electric field for pumping conductive fluid. The
electrokinetic phenomenon can be divided into electrophoresis and electro-osmosis.
Electrokinetic flow results from the effect of electrical field on charged particles in the fluid
and fluid itself, when the fluid is placed in a narrow capillary. The force on the particles in
the fluid leads to electrophoresis while the force on the fluid in a narrow capillary leads to
electro-osmosis. Since electrophoresis and electro-osmosis occur at the same time, electro-

osmosis usually determines the overall direction of the fluid.

Magneto-hydro dynamic (MHD) pump

The magnetohydrodynamic (MHD) micropump is one of the important micropumps
which has no moving parts, generates continuous flow, and has potential applications in
biomedical studies. The pumping source in the (MHD) micropumps is the Lorentz force
which is produced as a result of interaction between the magnetic and electric fields. The
magnitude of the force depends on the electric current across the channel, the magnetic flux
density and the width of the channel. The resulting Lorentz force affects the ions in the
solution and thus, propels the fluid. Because the Lorentz force acts on the bulk fluid and
creates a pressure gradient, MHD pumps generate a parabolic velocity profile similar to

pressure-driven flows. Figure (1.4) shows a schematic diagram of the MHD micropump.
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Figure 1.4: A schematic diagram of the MHD micropump

Compared with other types of non-mechanical micropumps, the MHD micropump has
several advantages, such as

1- The MHD micropumps operate without moving parts.

2- The pumps require low actuation voltages ( less than 10 V).

3- Similar to pressure-driven flows, forword and reverse flows can be obtained.

4- The solution with least slight electrical conductivity can be pumped.

5- The fabrication process is simple.

6- The pumps produce continuous fluid flow.
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Hence, it is believed that the MHD micropump can be used in biomedical devices such
as a drug delivery system or it can be used to propel highly conducting fluids such as liquid

metals and ionized gases and it can be used in fluid stirring and mixing.
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Chapter 2
Literature survey

2.1 MHD micropumps

A review study of microflow devices and systems was presented by (Shoji and Esashi,
1994). In the study, microflow devices including microvalves, micropumps and microflow
sensors fabricated by micromachining were reviewed. Schomburg et al.(1993) and
Schomburg et al.(1994) developed pumps and valves for microfluidic systems using
advanced micromachining technology.

A review studies of micropumps were presented by (Nguyen et al., 2002) and (Woias,
2005). Nguyen et al.(2002) divided the micropumps into two categories: Mechanical
micropumps which have moving mechanical parts, and non-mechanical micropumps
without moving parts. Woias (2005) divided micropumps into two groups: Reciprocating
micropumps which use the oscilaory or rotational movement of fluid, and continuous flow
micropmp (including magnetohydrodynamic, electrohydrodynamic, electroosmatic and
electrochemical actuation mechanisms) which are based on a direct transformation of non-

mechanical or mechanical energy into a continuous fluid movement.

According to these studies the micropumps can be divided into two large groups,
mechanical micropumps and non-mechanical micropumps. Koch et al.(1998), Ulimann
(1998), Richter et al.(1998), Jun and Kim(1998), Bohm et al.(1999), Zeng et al.(2001), Yun
et al.(2001), and Debesset et al.(2004) studied some of these micropumps that are used to

propel fluid for different applications.
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In the last century, the MHD principle has been widely used and studied and there are many
studies of the MHD channel flows in macroscopic scale. Ramos and Winowich (1986)
analyzed the steady state MHD channel flow using a finite difference method. The results of
the calculations indicate that the electromagnetic forces yield M-shaped velocity profiles.

Ueno (1991) studied the inertia effect in two dimensional MHD channel flow under a
traveling sine wave magnetic field. He concluded that the inertia effect to the power output
is very small. Also, Ueno (1993) studied the effect of turnaround lines of magnetic flux in
two dimensional MHD channel flow. It was concluded that a set of turnaround lines of
magnetic flux cause a set of recirculating flows. Bessaih and Kadji (1999) studied MHD
flow of a liquid metal Flow driven by a rotating disk. The results obtained showed that the
flow can be controlled by a good choice of electrical conductivity.

Attia (2001) studied the effect of variable viscosity on the transient MHD flow of dusty
fluid with heat transfer. He found that some important effects for the variable viscosity are
indicated.

West et al.(2002) studied application of MHD actuation to continuous flow chemistry
where fluid propulsion was achieved using AC MHD actuation. Wang et al.(2003) designed
a programmable diffusion bioassays based on MHD microfluidic system.

Brener and Park(2004) studied and discussed the design and fabrication of
electromagnetic actuators and their application to affect the wall shear stress on a fully
turbulent channel flow. Satou et al.(2004) developed a new AC MHD calculation for

electromagnetic stirring.
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Khalzov and Smolyakov (2006) proposed a new numerical method to calculate two-
dimensional steady state MHD flows of incompressible liquid metals in linear and circular
thin-wall ducts of a rectangular cross section.

Recently, theoretical and experimental studies on DC and AC MHD micropumps were
investigated. An MHD micropump using a DC current and a permanent magnet was firstly
described by (Jang and Lee, 1998).

Jang and Lee, (2000) studied theoretically and experimentally an MHD micropump.
They obtained the performance of the micropump by measuring head difference and flow
rate. In this study, bubble generation by the electrolysis of the conducting liquid was
observed.

The use of magnetohydrodynamic (MHD) to circulate fluids in conduits fabricated with
ceramic tapes was described by (Zhong et al., 2002). The experiments described used
mercury slags, saline solution and deionized water as the conducting fluid.

To avoid gas bubbles, Homsy et al. (2005) described the operation of DC (MHD)
micropump at a high current densities where the gas bubbles was not observed in the
pumping channel. They have discussed experimental observations where they noted that the
flow velocity was higher than that calculated. One explanation is that the temperature in the
channel began to rise because of Joule heating occurring in the channel. Above a certain
threshold the temperature will decrease the viscosity of the pumped solution, leading to an

increase in flow velocity.
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Patel and Kassegne (2006) developed a numerical frame work to investigate different
flow channel geometries influenced by the micromachining process, effects of non-uniform
magnetic and electric fields, Joule heating, and electroosmatics in MHD micropumps.

Ina DC (MHD) micropump with permenant magnet, the electrolytic reaction that enables
current conduction also produces gas bubbles that impede fluid flow and causes electrodes
to dissolve. This limits the practical application of such a device to non electrolytic
conductors, such as liquid metals. When an AC current of sufficiently high frequency is
passed through an electrolytic solution, the chemical reactions are reversed rapidly enough
that bubbles never have a chance to form and no electrode degradation can occur (Lemoff et
al., 1999).

Lemoff and Lee (2000) described the theory, fabrication method and experimental results
of an AC (MHD) micropump. Pumping was demonstrated in several different electrolytic
solutions. Eijkel et al.(2003) developed and fabricated an AC magnetohydrodynamic
micropump for chromatographic application.

A new study of (MHD) flow is presented by (Qian et al., 2005). They studied
theoretically the (MHD) flow of a RedOx electrolyte in a straight conduit, and solved the
coupled momentum and advection equation.

In addition to (MHD) pumping, study of mixing systems and microfluidic networks
using (MHD) pumping has been made. Bau et al. (2001) and Yi et al. (2002) constructed
and analyzed two types of a magnetohydrodynamic stirrers experimentally and theoretically.
An active micromixer has been developed that uses electric and magnetic fields to create
Lorentz forces that induced MHD flows in a solution of an electrolyte (Bau et al., 2001).
The device was fabricated from ceramic tapes. Electrodes were created with gold paste, and

were placed parallel to the channel. A permanent magnet was placed under the mixing
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device. The mixing chamber was 1 mm deep, 4.7 mm wide, and 22.3 mm long (volume
~100 pL). When potential difference was applied to the electrodes, Lorentz forces were
generated parallel to the axis of the chamber, and the solution was mixed within several
seconds. Yi et al. (2002) investigated experimentally and theoretically a
magnetohydrodynamic (MHD) stirrer that exhibits chaotic advection .

The area of micrototal analysis systems, also called (lab on a chip) is grawing rapidly
(Reyes et al., 2002). Lemoff and Lee (2003) presented an MHD microfluidic switch which
could form the basis for general microfluidic circuits. The switch uses an AC MHD pumping

mechanism.

2.2 Present contributions to the previous work

The above previous researches presented and analyzed different models of the MHD
micropumps which can be used in biomedical devices and microfluidic propulsion
applications. Most of these researches studied the micropump flow experimentally or
theoretically by assuming one dimensional steady fully developed flow, where the Poiseuille
condition which neglects the side-wall frictional effects was used to solve for velocity
distribution.

In this study a theoretical model of a DC and AC MHD micropump flow will be analyzed.

The present contributions to the previous work are:

1- A transient two dimensional fully developed flow in a DC MHD micropump is
modeled and analyzed. The dimensionless governing equations are solved numerically using
suitable numerical technique and analytically using eigenfunction expansion method. The

numerical and analytical results are compared with each other to enhance the solution.
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2- A transient two dimensional developing flow in a DC MHD micropump is also
modeled, and the dimensionless governing equations are solved numerically using pressure-
correction method and SIMPLE algorithm. The results are verified by comparing them with
analytical solutions of the fully developed region in the pump channel.

3- The effect of fluctuating Lorentz force on the transient behavior of an AC MHD
micropump is studied for both fully developed and developing flow. A sinusoidal electric
field with a perpendicular sinusoidal magnetic field with phase shift are applied. The
difference between the DC and AC transient flow behavior is shown and studied.

4- The effect of dimensionless parameters such as Hartmann number, aspect ratio and
prandtl number on the DC and AC MHD flow is studied.

5- It is noticed previously that there is an important effect of heat generation on other
types of micropumps. Hence the effect of the heat generation produced by constant and
fluctuating Lorentz force on temperature profile is studied in this work. The dimensionless
energy equation is solved numerically and analytically and the effect of different parameters
on temperature distribution such as Hartmann number, Stanton number, Eckert number and
Prandtl number is discussed.

6- To design the MHD micropump, a good selection of the magnitude of certain
parameters must be done. Hence the effect of different dimensional parameters such as:
cross-sectional dimensions, magnetic flux, electric current density, frequency, phase angle
and applied voltage on controlling the transient and steady flow and temperature rise for both
DC and AC MHD pumping is studied.

7- The obtained results for the numerical analysis of a DC and AC MHD flow are
compared with exact analytical solutions of the same governing equations or reduced forms

of them.
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Chapter 3
Mathematical Modeling

3.1 MHD theory
An inclined view of the MHD micropump and the coordinate system used are shown

in Figure (3.1). A conductive liquid with a density 0 , a dynamic viscosity £ , and an
electrical conductivity O fills a rectangular cross-section channel of width w, height h, and
length L. The coordinates x, y, and z are aligned, respectively, along the channel's axis, width,

and height.

Electrode=s

Pk A ST
Al wmnmuvm* &
ANAVAVAVAVAVAY =
P AV AV AV A
A Ay
VAN

Figure 3.1: Inclined view of an MHD micropump

The channel is subjected to a potential difference V imposed across the opposing
electrodes that induces an electric current of density J. The channel is placed in a uniform

magnetic field of flux density B in the z direction.
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The interaction between the magnetic and electric fields produces a body Lorentz force
JxB that is perpendicular to both J and B. The Lorentz force is used to pump the
conducting liquids along the microchannel.

To illustrate the pumping mechanism in details, the forces exerted as a result of the
interaction between the electric and the magnetic field will be analyzed. As the electric
current is carried between the electrodes across the channel, positive and negative ions will
be formed and moved with opposite transverse velocities as shown in figure (3.1). The force
exerted on every ion of species (i) in the solution will equal:

Fi =Fel +FL (3.1)

Where Fel is the electrical field force and Fv is the Lorentz force. The electrical field

force on every ion is:

Ri=4qE (3.2)

Where Z is the valance, q is the unit charge. Due to the electroneutrality of the bulk

solution E,ytotm:EZ‘Zin =0 (Eijkel et al. 2003), Where N; is the number of ions of
|

species i in the channel.

Now the second term in equation (3.1) is the Lorentz force:
R =Zqv xB (3.3)
Where V; is the velocity of the ion.

The velocity has two components, one parallel to the electrical field and one along the
channel length axis. The velocity component parallel to the electrical field exerts the first

component of the Lorentz force:

R, :EXBILZCWN (3.4)

www.manaraa.com



17

Where (4 is the electrophoretic mobility (m?/sV) and ,L.{E is the migration velocity.

But LZG,L{N is the electrical conductivity multiplied by it's volume. Hence
I

R, =0V,ExB (3.5)
Where Vc is the channel volume, Eis the electric field intensity and o is the electrical
conductivity, or F; =V.JxB Where J is the current density.

Now the velocity component along the channel length axis will exert the second
component of the Lorentz force (which is the magnetic force exerted on a current carrying

conductor) which is
F,=JxB (3.6)
Where the current J =o(v>< B) induced when the magnetic field induces a voltage in

the conductor of magnitude VX B, then the total conduction current is now defined as:

J=olE+vxB) (3.7)
Then the total Lorentz force will be

F =Jx B=0(E+v>< B)XB (3.8)
And the work done on the system per unit time by the Lorentz force is

W=FL.v

or W=JxB-v (3.9)

But the magnetic field induces a voltage in the conductor of magnitude V><B=J/G then

33

= (3.10)
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In this work, a DC and AC Lorentz force will be used to propel fluid in MHD micropump.
In AC pumping, a sinusoidal electric current with a perpendicular sinusoidal magnetic field
will be used. The electric current and magnetic fields will have equal frequency and a phase
difference between them.

To illustrate the AC phase difference concept, figure (3.2) shows the relation between
two AC voltages or currents that are out of step with each other, which means that the two
waveforms are not synchronized; that their peaks and zero points do not match up at the

same points in time.

Figure 3.2: Out of phase waveforms

The two waves shown above (A versus B) are of the same amplitude and frequency, but

they are out of step with each other. In technical terms, this is called a phase shift.

3.2 General Governing Equations
The governing equations of the MHD micropump that present the fluid motion are:

The Ohm's Law:

J=0|E+uxB] (3.11)
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The continuity equation:
Vu=0 (3.12)

The time dependent momentum equation:
i _
P +AaVi=—\p+Ma+IxB (3.13)

And the energy equation:
ol _ >3
o5 45, (u.VT )_KWT o (3.14)

In the above equations, U is the fluid velocity, pis the density, tis the viscosity, Cp is

the specific heat, k is the thermal conductivity and T is the temperature.

In the following sections, the governing equations of two dimensional fully developed
flow and developing flow are presented, where the fluid can be propelled by constant or
fluctuating Lorentz force. Various assumptions are set to develop the model:

1- Two-dimensional.

2- Laminar flow.

3- Incompressible fluid.

4- Constant fluid properties.

5- Negligible radiation heat transfer.
6- Negligible gravitational effects.

7- The current flow is assumed to be one dimensional.
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3.3 Governing Equations of the Fully Developed Flow

In this section, the governing equations of the transient incompressible two-
dimensional fully developed flow with both constant and fluctuating Lorentz force are
studied. The velocity components in the y, and z directions are neglected compared with the
velocity along the conduit's axis.

For the fully developed flow the nonlinear term in equation (3.13) goes to zero, and the
continuity equation goes to zero since b =0.

The induced current in the channel is

J=0lE+vxB) (3.15)
It can be written as:

J=E+arxB=E, +dy )xB (3.16)
Then J=c&, +aB (3.17)

Now the Lorentz force is:
R =IxB=cE, xB +aiB xB, =(EB-auB) (3.18)
By introducing the Lorentz force given in equation (3.18), the two dimensional x-

momentum equation will be:
p%’l— D, & azz]Jro(E uBB (3.19)

In the energy equation, the flow is assumed thermally fully developed, and the viscous
dissipation effects are neglected because the fluid velocity is very small. Hence the energy

equation will be:

aobla e

(3.20)
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Now the governing equations of transient fully developed flow using an AC
magnetohydrodynamic MHD pumping mechanism will be studied. A sinusoidal electric
current with a perpendicular sinusoidal magnetic field are used. The electric current and
magnetic fields applied have equal frequency and a phase difference between them.

When applying the AC current field and magnetic field with a phase shift ¢ and equal
angular frequency @ the two dimensional transient fully developed momentum equation will

be:

p%J dp+ gyzl,j ggJ+o(ES|r(a1+¢) UBsinat )Bsina (3.21)

And the energy equation becomes:

ar _ v(@zl' GZTJ o{Esir{at +¢)+uBsina
&Y Jeo

3.22
a (3.22)
To write the governing equations in dimensionless form, the following dimensionless

variables can be used:
A u _t P _dpdx H_T—TW

:X *:— *:_ _— —_ =
y*W’Z W’u uO’TT*’ =B’ T,

Where Uy =0V BWu, T" is the period of the alternations in the electric field and magnetic

field, and Tw is the wall temperature. Substituting the above dimensionless variables leads

to the following dimensionless equations:

Momentum equation:

’[2‘5U ‘;flf ‘2;” +si2)sin2zr +¢)—Hau' sirt(27z)—P* (3.23)

With the following boundary conditions:

u*%Q z*,r;:u*}lz*,r):o

uly*,0,z)=u yk,on)zO
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And the energy equation:

tzg‘z ér[g;*@ §9J+S(y*,z*,r) (3.24)

Where the source term is:

sy 2.z HéE{ﬂ—)+U*Sir(2m'))2

In the above equations, Ha=wB ) is the Hartman number which is the ratio of the

7

magnetic body force to the viscous force, St= is the Stanton number which is the

ratio of the diffusion time to the forcing period, Pr is the Prandtl number which is ratio of

2
the rate of diffusion of viscous effects to rate of diffusion of heat, ECZ%IOT is the Eckert
W

number which is the ratio of kinetic energy to enthalpy change, and 052% is the conduit's

aspect ratio.

Now using T:V\F—/V as the dimensionless time, the above dimensionless equations can

be reduced to be applicable for the DC fully developed flow:

Momentum equation

ar U 62u
ar@ﬁ az

- +1—-Hau* —P* (3.25)

(3.26)

With boundary conditions: uz,z :u* 1z ’T):O
u y*,047)=0

uly*,0,z)=
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And the energy equation

2 2 2
g—‘j 1[;0 ;9]+H§EC( ) (3.27)

= lZ*,z')=0

v Oﬂ): 0 (3.28)

0z
With boundary conditions: 3 &t

3.4 Governing equations of the developing flow
In our model, the width of the channel is assumed to be much larger than it's height

(w/h>>1), hence we studied the transient incompressible two-dimensional developing flow.

The following dimensionless variables can be used to non-dimensionalize the governing
equations:

e Y Twe Y UO’T\NZ/V’p oEBv

Where U, =OEBW/,LJ is the reference velocity. Substituting the above dimensionless
variables leads to the following dimensionless form of continuity and Navier-Stokes

equations for an incompressible, two-dimensional developing flow.

Continuity equation

ar o

~— ++-=0 3.29
x o (3.29)

X-momentum equation

ar (a+l AT AN U OU g
EJ{ZJR“ Uset arj a<*+5x* ¥ - +1—-Hau’ (3.30)
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Y-momentum equation

ARl

(3.31)

In the above equations, U*and V*are the dimensionless velocity components in x and

y directions, 7 is the dimensionless time, X'and Y*are the dimensionless coordinates,
Ha=wB %is the Hartman number, R&@ is the Reynolds number which is the ratio

of inertia force to viscous force and Dn is the hydraulic diameter.

The boundary conditions can be specified as follows. The velocity is zero at all

boundaries except the channel outlet.

w0y )=v(0y)=0
u*{x*,0)=v* x*,0)=0 (3.32)
u\x: 1)=v* x*,l):O

The flow is fully developed at the channel outlet

)l

Initially, at =0, U*(X",y")=v*(x",y*)=0

Now similar to the study of the AC fully developed flow the electric and magnetic
field applied in an AC MHD micropump are sinusoidal and have phase shift and equal
angular frequency. So the governing equations that suitable for developing flow are

Vu=0 (3.34)
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p%j +AuV)a=—\p+Ma+JxBsinaisir(at +¢) (3.35)

The following dimensionless variables can be used to non-dimensionalize the governing

equations:
X_W’y*w’u_uo’TT*’p cEBv

Then the dimensionless form of continuity and Navier-Stokes equations for an
incompressible, two-dimensional AC developing flow can be written as:
Continuity equation

ar a/*
v ay* =0 (3.36)

X-momentum equation

6r (ool )

i) azfaazu* xo (337)
& ol T +sin2rr)sin2zr+¢)—Hau* sirt(2r7)

Y-momentum equation

St o +(2a)ReD[u 5)(*+v* Qﬁ]_ 3 5)(*2 @*2 (3.38)
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The boundary conditions can be specified as follows. The velocity is zero at all

boundaries except the channel outlet.

w0y )=v(0y)=0
u*(x*,0)=v* x*,0)=0 (3.39)
u\x* 1)=v* x*,l):O

The flow is fully developed at the channel outlet

) lr)o

Initially, att=0, U*(X",y")J=v*(x*,y*)=0

In this work, the previous dimensionless governing equations (23-27) are going to be solved
for velocity and temperature distributions for both DC and AC fully developed flow to
illustrate the effect of Ha, Pr, Ec, and St numbers on the MHD flow. The equations will be
solved numerically and analytically and a comparison between them will be presented. The
dimensionless governing equations (29-31) and (36-38) will be solved numerically using
suitable method to show the effect of Ha and St numbers on the developing flow for both

DC and AC pumping. The following chapters illustrate these solutions.
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Chapter 4
Fully developed flow solution

4.1 Introduction

In this chapter a numerical alternating direct implicit (ADI) technique and analytical
eigen-function expansion method will be used to solve the transient fully developed flow for

both constant and fluctuating Lorentz force.

4.2 DC (MHD) pumping
4.2.1 Analytical approach

In this section the analytical approach using the eigenfunction expansion method is used
to solve the momentum equation of the transient DC fully developed flow.

The dimensionless momentum equation is

%J; :g;ljz +§u2 —Hau* +N (4.1)

Where N=1—p"

With boundary conditions: w0z, 7)=ur lZ*,’L')=O (4.2)
uly*,0,z)=u y*,ogr)zo

Consider the eigenfunctions of the related homogeneous problem:
or g a

w0z, 7)=ur{l z,7)=0
uly*,0,z)=u y*,ogr)zO

(4.3)

(4.4)
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Since the partial differential equation (4.2) and the boundary conditions are linear and

homogeneous, we apply the method of separation of variables.

Let Uy, z",7)=dzMy",z’)

Taking the derivatives and substituting into equation (4.3) yields

106 1 82¢ 62¢ P
5o he ‘a[y ?J‘ A o

Where AEis the separation constant.

From this equation the two-dimensional eigenvalue problem is

TP 0P, ey 07" )=dlz')=0

¥ e +A¢=0 y“,O;: y*,a):o (4.6)
To solve equation (4.6) let ¢(y*, Z*)z f(y*)g(z*) (4.7)
Take the derivatives and substitute into equation(4.6) yields

1 _Adg_»__

fay gdz ~ 7 4

Two ordinary differential equations result from separation of variables of equation (4.6)

with two independent variables:

g—;zﬂxzf =0 (4.9)

with f(0)=f(1)=0

And

3_29—(;/2 —2)g=0 (4.10)

with 9(0)=0le)=0
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Now equation ( 4.9) with it's boundary conditions can be solved, and the solution will be
f.ly* )=simaywith 3, =nz (4.12)
Where N=12----e0
Now in solving equation (4.10), for each value of }, is still an eigenvalue problem, then
there are an infinite number of eigenvalues A for each N.
= A=

Eq.(4.8) can be written as:

3_29+(/12 —)=0 (4.12)

The solution of this equation is
g(z”‘)zclsin//I2 —y?Z" +C,CO§ £ —p2 7" (4.13)
By applying the boundary conditions, the solution will be

gmn(z*):sin% z' (4.14)

A Zoy="1 4 (2

Where m=12....,oc and N=12----e0

From equation (4.1):

%(y*, z*):simﬂy*sin% A (4.15)

Now assume the solution of equation (4.1) as the following:
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u*(y*, z", r)zzzamn(r)@m(y*, z*] (4.16)

Which will satisfy the non-homogeneous equation with initial condition u*(y*, Z ,0)20
.Substituting u*(T,Z*,T) and it's derivatives from equation ( 4.16) into equation ( 4.1)

yields:

EZ dc?;” +(ﬂf2nn+HaF)9,m(r))¢i"n(y*, z*): N (4.17)

where N=1-P* with ~ &,,,(0)=0

In equation (4.17), we have a double Fourier series. To solve for amm(Z')

Let: V.. :%‘ +(%n+Hé)am(r) (4.18)
This yields

ZZ_:ansimfg/*sinr%Z z*=N (4.19)
Let Kn(z*):Zansin%r A (4.20)

Then equation (4.20) can be written as:

Z;Km(z*)simaf* =N (4.21)
For fixed z this is the Fourier sine series of N. From equation (4.21):
K,n(z*)zlesidey* (4.22)
Perform the integral yields

Km(z*):%\lz (1-coswz) (4.23)
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Now substitute equation (4.23) into (4.20) :

y(l—com)= \, sinl% 7 (4.24)
Nz me a
Then,
l 1—c0$17z)3|n— 7'dz (4.25)
_ AN (4 _
V’"”_W(l coé%t}l cosw) (4.26)

Then V,,, can be written as

16N
an={m 2 mand n od’c} w2

0 mor n eve

Now equation (4.18) is a first order ordinary differential equation and can be solved for

SAnm

() Cd% Ha’t’)f +(m) (4.28)

The initial condition is:
annl0)=0

Then the solution is:

a““(’):(/&nnvi"hav)@—e*’@""*“é)f) (4.29)
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Substituting into equation (4.16 ) yields :

u*(y*, zZ, T):ZZ ()gm\i%az)ﬁl—e%m&)f)s imzy*s in% z (4.30)

In dimensional form, the velocity can be written as:

%+ng

u(x, y,t) =Ugur y* ', 7)= %EZ(W) 1-e W S|m7ry5|

(4.31)

The mean velocity in the micro-channel can be determined from the equation (White, 1979):

_[auly,z tHAC
U, —]!'C A (4.32)

Where Ac is the cross-sectional area of the channel.

The density here is assumed to be constant, then

U= A[ uly,z HAc (4.33)

Ac

C

Substitute the velocity from equation (4.31) yields

4}ﬁm+H§
7 G5z 00

HZZ(Wl‘

W
hw
Perform the integrals to obtain
%nmé)w}
%
=t > mmzwe( e (.39
And then the volume flow rate will be
4)%1,1+H£:@)Wtr
Q= “022 mnz?( ﬂmn+H§) ’ (4.39)
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4.2.2 Numerical modeling

The finite difference alternating-direction (ADI) technique which is a time marching
method is applied to solve the dimensionless Navier-Stokes equation. A uniform grid of a
number of nodes in the y and z directions is used. The method with about 1000 time steps is
employed until the steady state solution is achieved. At each time the implicit solutions using
the Crank-Niclson scheme are directly obtained from the use of Thomas Algorithm.
Different time step size (A7),(AY ), and (AZ ) are taken to ensure stability, the results show
that the numerical solution is always stable.

The numerical (ADI) technique is used to solve

ar AU 82u

> —Hau* +N 4.36
o ay* & (4.36)
Where N=1-p"

Firstly, we treat the y derivative in equation (4.36) implicitly using finite difference

method.
+MHL * sl H e H ML
u |n]L —u |nj _u i+LJ ZJ Ij ‘HJ |rH]—,J +U Ij+l_2J |21 +U* Ij -1 Héu*ml (4.37)
At Ayk N
This equation can be written as:
AUt —Bul +Auli; =K (4.38)
Where
_Ar
N
B= iAT 11+ HaAr
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0=t 20 -t e

Now by using finite difference method treat the z derivative in equation (4.36) implicitly

u*rH_-Z «MHL LML Zj*ml S« w2 —ZJ*E]'LZ +u*n+2

i —Uy U — 'é Ui | Uija b2 _HauTE +N (4.39)

A N N

This equation can be written as:

Cutia—Duly? +Cutiia =107 (4.40)
Where
C= AAz*TZ

B:AZZA; {1+ H&A

Lo :{u*ﬁl +—AAy*TZ (u*?ff,— —2 T U )+ MTJ

4.3.AC (MHD) pumping
4.3.1 Numerical modeling

Similar to the solution of the DC fully developed flow, the finite difference
alternating-direction (ADI) technique can be used to solve the dimensionless momentum

equation.

sed! :22;2 +§§g isif2asifm ) -Hauwsitem) P @ay
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Firstly, we treat the y derivative in equation (4.41 ) implicitly.

> U*P]Ll u*lj U*P:fj ZJ*U +U*|n1;}j u* Ij+l ZJ*IJ +U* IJ |
St 5 + 5
At Y NZ* (4.42)
—H&UTE i 2+ sir2r i +g)-P

This equation can be written as:

AUl —Bul +Auli; =K” (4.43)
Where
_ AT

StAy*?

B:(1+ Sen Hgtzmsw?(Zm”l)J

Kl u* IJ +St2 (U ij+ — 2U*|J +U,j 1) %(Slr(wl)sw(znﬂﬁ +¢)_Pk)]

The descritization in z direction yields
g Ui Ui _ui; 2u*ﬁl+u*l“fj LU=y +ul

Ar e N (4.44)
—Hau 7 sire (22 )+sir{2? sir2mr + )P

This equation can be written as:

CU‘., 1_DLTIJ +CLf| g = Lr}+1 (4.45)
Where
_ Ar
SeAz

www.manaraa.com



36

B:(1+ 2 Hgtffsuf(WZ)J

Lerl = U*ﬁl +—— Ar (U*Pffj — Uy J +U*F111]) E(SII’(ZM’**z)SIr(Wz +¢)—P*)
SeAY St
The ADI method produce a tri-diagonal matrix which can be solved for velocity using
Thomas Algorithm which depend on Gauss elimination method. The Thomas Algorithm and
the program used to solve for velocity and temperature is included in appendix A.

4.3.2 Steady state analytical solution

In this section, the analytical approach using the eigenfunction expansion method is used
to solve the momentum equation of the steady state AC fully developed flow.

The dimensionless time independent Navier-Stokes equation is

o +% +sif2)sin(2r+¢)—Hau' sirf (2r)-P =0 (4.46)
_ __ulozr)=urlt,z)=0
With boundary conditions: U*EYK,OLU*EYK,O!):O (4.47)

Consider the eigenfunctions of the related homogeneous problem:
82—2 ou g —Hausirt(27)=0 (4.48)
& a’

Since the partial differential equation (4.48) and the boundary conditions are linear and

homogeneous, we apply the method of separation of variables.

Let u(y,z*)=dyz’)

Taking the derivatives and substituting into equation (4.48) yields
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—%%?—Hafu sir?(2r)= ;gfé R (4.49)

Where Zis the separation constant.

From this equation the eigenvalue problem is::

% +£¢=0  d0)=d)=0 (4.50)

The solution of the above equation is:

dz* )=c sinkz* +c,cosiz’ (4.51)
By applying the boundary conditions, the solution is:

nrz ..

¢§1(z ) sm— Z" (4.52)
With

p L

o

Where N=1,2,- - - - ©0. Now assume the solution of equation (4.46) as the following:

u*(f,z*):&(yM(z*) (4.53)
=

Which will satisfy the non-homogeneous equation with boundary conditions
u(0z°)=u*{l,z*)=0

Substituting u*(y*,z*) and it's derivatives from equation ( 4.53) into equation ( 4.46)

yields:

g (ﬁ+He%5|r?(27n))3ﬁ(y)Jsir{n7fJ:p* sirformsi{2er+4) @50
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Let:V, = —7 (R +Hasir 2w, (y) (4.55)
This yields

ZV sm—z = —sir2z)sif2zr +¢) (4.56)
Wy )=2[(p —siramirarr-+ )il 2z @57
Perform the integral yields

= skt +) -

Where N=135--- e

Now equation (4.55) is a second order ordinary differential equation and can be solved

for Q,

V,
anly)=cle -+ (/ﬁ+Ha@S|r?(2m)) (4.59)

Where ML2=+/{(Z +Hasirf(2z)

V,[e™-1)

And A= e Hasin (om)|ee—em)

V,(1—em)

@= e Hasinea)lee—e)
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Chapter 5

Fully developed energy analysis
In this chapter the dimensionless energy equation will be solved analytically using eigen-

function expansion method and numerically using ADI method in the same way which was
followed when solving the momentum equation. From these solutions the temperature
distribution will be given for both DC and AC pumping.
5.1 DC (MHD) pumping

5.1.1 Analytical approach

The energy equation can be written as

00 _ 1 8249 >0
e ay* az ]+S(y*z r) (5.1)

Where the source term is:

S(y*’z*’z'):Ha?E{l_l_lé +Zz; [ﬂﬁm\_/rrllléjQ_e{ﬂ%ﬁHaﬁ)r)simw*sin%z*T

Take the homogeneous part of equation (5.1):

o0 _ 1 &0, 70
o ay* &*2] (5.2)
Let Ay*,Z", 7)=H(z}hy", ")
Differentiate and substitute into equation (5.2 ) to yield:
PrdH_1{ &y v
(2,2,
Then the two dimensional eigenvalue problem is:
82t// Py 7' )=ufl,2")=0
+— +17=0 5.3
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Equation ( 5.3 ) is similar to equation ( 4.6 ) in previous velocity analysis.

So the solution is:

- \2
Eigenvalues: 7ﬁ =(i7Z')2 +(%[) (5.4)

Where 1=12....,0c and J=12----e0

With eigenfunctions:

* | _ci1nt 1 J7Z' %
s Y, Z —SIﬂIflfSIﬂE VA (5.5)
Now refer to the nonhomogeneous equation (5.1 ) and assume:

dy 2.9-SSHOMbr.2)

Which will satisfy the non-homogeneous equation with initial condition Hk(y*, Z*,0)=0

Take the derivatives of equation (5.6 ) and substitute into equation (5.1 ) yields:

ZZ‘ [% %bj (T)}/fu (W, z*):
e L oS5 Voot By |

(5.7)
With

b;(0)=0
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The above equation can be written as:

ZJZ{%ﬂZ ()J%(Y*Z) et
£23. (ﬁ)(l clictst Kimay Sigr 69
+HéEm (ﬁ% mnH é@ g Ltk ﬁ(ﬁ\/kl (1 e%ﬂﬁ.w)r

S|m7§/*sm—z S|riny*sm—z

d
Let: E = dtj gzr (7) (5.9)
Then
ZZ]EJ- siri;z;fksin% 7 =sy.z',7) (5.10)
Let L ZE,Jsm— (5.11)

The equation (5.11) can be written as:

Z].i(z*)sirizy* :S(y“,z*,r) (5.12)

For fixed z this is the Fourier sine series of S.

From equation (5.12):
I_j(z*):Zt[SsiriWkdy*
. 2Ecl co3r
L (z ) - )+2E°ZZA”” S|n—z

2Ha€ECzZ§;§;An r)M,msm—z sm@z

(5.13)

www.manaraa.com



42

Where

Ann(f):(jﬁmn_mhg )@_e%n_%)f)
(ﬂk. rki—lﬁaz @ e@'_Hé}[)

M [coél+|+n)7r—1 _cofl—i-njz-1 cof+i-njz-1_cofl —i+njr—
" A

(I+1+n) (I-1-n)

Now

ZE,sm—z

Then

I ( )sm—z dz

E = i ﬂ2E°H az(l—cole—coqz +2E°Z§;A””

+HHEE S DD 5 A (DA MMy

But

dg 77
dr Pr j7Z2H6.2 +2E°Z§;A“”

+4Ha?ECZZZZAn (MM

With initial condition:  3;(0)=0

(I-+1-n)

(I—1+n) 1J

(5.14)

(5.15)
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The solution of the first order ordinary differential equation (3.54) is

hie)= ,f@“[l—e J

P, o
szr (1—9 Pr|—
2 L jj (/ﬁn+Ha7)

1t U U
[e—(/iﬁ-l-Hé)T _ePer] [e‘(/%nﬁ-Hg}[ _ePJrT] [e‘(ﬂﬁ‘!-]%ﬁZH&z)T _ePJrT]

Qinp— 1-e* |- - ¥
+§z j{ Ui —(/ElJFHa?) il:]jr—(/ﬁm‘i'l'lé)

Where
_1e&c
b =ijrra
c(—)vm“ whenm=n
sz szn Hé
0 whenms=n

— L an \_/ Vkl \
Qjmr=4HEECM M U?mn‘l‘Hé) A +Ha2)

And the indices: 1, J,K1,mn=135----;0c

Finally,

6(y*z r) m )S|rl7zy*5|n—z

=

Pr

& +2,+2H4)

(5.17)

(5.16)
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5.1.2  Numerical modeling

Now the ADI method can be used to solve the energy equation

‘2‘2 ér (55;(9 §9J+S(y* zZ" 2') (5.18)
Where the source term is:

% 1 % 2
S(W,z ,r): Ha"-E{m +U j

Firstly, we treat the y derivative in equation (5.18) implicitly using finite difference

method.

’[leilj 2‘9%1"' ILJ 91+1 26{11 +6PJ 1] Snrl

o (5.19)
This equation can be written as:
_BQ,ijl _|_AQ+F£11 =K" (5.20)
Where
_ At
Pray*
B=—2T 11
PrAy*

K :‘(6{11 +% (Q?,-+1 —24 +6fj-1)+5{‘j+1AT]

Now treat the z derivative in equation (5.18) implicitly.
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1 2 2

This equation can be written as:
2 2 1
Cqa-Day +Caya =Ly (5.22)

Where

AT
Praz

At
PrAz*

D= +1

Ly ={6f,:-*1 i 26!**1+6m)+3“%r]

5.2.AC (MHD) pumping
Now the ADI numerical method can also be used to solve the AC energy equation with

the same steps

00_1[0 0 .
St 27 5 pr[éy*z az*2J+S(y*,z,r) (5.23)

Where the source term is:

S22 Hg&(ﬂﬁz—w)w“sr@mﬂz
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Firstly, we treat the y derivative in equation (5.23) implicitly.

se -4 {m A B2 +9.7,-1J

+SM (5.24)

This equation can be written as:
1 1 _
~BgH+AGH =K (5.25)
Where

A:L2
SEPrAy*

__Ar > +1
SEPrAy

i Ar SMAT
Ki :{gljj St2 AZ*Z (Q]Hl 261 +Q]j 1) étz ]

Now treat the z derivative in equation (5.23) implicitly.

2 41 1 _oppil 1 2 2
Stzng QT _1 141, ] 26{1;;4' (. IJ+1 ZHH +6h+ S|nj+2 (5.26)
At Pr N v
This equation can be written as:
Cqa-Dar+Cqia =157 (5.27)
Where
_ Ar
SEPrAz*
2N\t
=—— ~+1
SEPrAz*

ml _ 1, 1 SMZA
I—J' —{@T StZPAy* (Q‘IJ 2@++ ) StZTJ
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Chapter 6
Developing flow solution ( pressure correction method )

6.1 Introduction

The pressure correction method which is widely used technique for incompressiple
viscous CFD applications (Anderson, 1995) is applied to solve the previous two-dimensional
incompressible Navier-Stokes equations in non-dimensional form. The technique is included

in an algorithm called SIMPLE (semi-implicit method for pressure-linked equations).

6.2 Staggered Grid

For discretization of differential equations a uniform staggered grid where the pressures
and velocities are calculated at different grid points in the x and y directions is used. In

figure (6.1) a staggered grid for rectangular area is sketched. Primitive variables (U,Vand p)

are placed in different places. The velocity component u is calculated at the solid grid points,
labeled (i-1/2,)), (i+1/2)), etc., and the velocity component v is calculated at the open grid
points, labeled (i,j-1/2), (i,j+1/2), etc., and the pressures are calculated at the triangular grid
points, labeled (i-1,j), (i,j), etc.

That simple model of staggered grid gives us possibility to use simple discretization with

second order accuracy.
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Figure 6.1: Staggered grid used for descritization

6.3 Descritization
The nonlinear terms in the left hand side of the Navier-Stockes equations can be ignored

because Reynolds number is small. Hence the resulting system of equations becomes:

ar o _

yth_O (6.1)
(% g% 62“ o - +1—-Hau* (6.2)
N__ oV oV 6.3

or ay*@(kay

we have only three equations for the three dependent variables U*,V*, and P* which
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have to be discretized on a grid. First we have momentum equations (6.2) and (6.3).

These equations can be discretized on staggered grid and written as follows:

X-momentum: about (i+1/2,))
UM “AP, U
izl gl Py — Y + é' a5
A X Y 64
i+}, j+ B +},‘ i+}, -~
2 Mol M Haw,
Ay 7!
y-momentum: about (i,j+1/2)
1
\/I”]L+ \/I” ﬂHl an +Virllj+1 2\/|nj+1 +V|n1,j+l +V|nj+‘3 2vlnj+l +V|nj% 65)
A N &F i |
from equation (6.4),
-, _+u” u,. M,
U.n+l_ _ l—HéAt n — . I+é,j |+§,J 2] I+§,j+1 |+ j |+21 -1
' =-rase, (s F
N n n
_&(ﬂm P et
(6.6)
or,
I"H- ﬂ n n
1 —(1—Ha"-At)J )—&(n+l,-—n,,-) (6.7)
2
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where

u; -2, +uh, U AT U

1 L1 1
A=— 2,] I+§,j I—é,j _ I+§,j+1 2] I+§,j—1 (6.8)
(AXF (Ayf
in y-mom
V" 2\/n V- 2\/“ +vn
W M (AX)Z (AY)Z (6.9)
Al
N (n'?m —p} )
or
Al
vln:lkl _Vlnj+2 —NB- y(piPrl Iq) (6.10)
where
A V'V AV
B=— g g Hig iy g i (6.11)
(AXY (Ay)z

Similar to the DC developing flow, the pressure correction method can be used to solve
the two-dimensional incompressible developing Navier-Stokes equations in AC MHD
pump.

The nonlinear terms in the left hand side of the Navier-Stockes equations also can be

ignored. Hence the resulting system of equations becomes:

ol Lalu Zyl_ﬂbl

www.manharaa.com




51

" +a/* -0

X

(6.12)

St %JT =—ge* +‘2)2?2 +§;'2 +si2zsin2r+g)—Hau sirt(27r) (6.13)

o _ PV Y

(6.14)
& "o ar
Now the momentum equations (6.13) and (6.14) can be descritized and written as
follows:
X-momentum: about (i+1/2,))
ud —u g —Al UM, Uy AN U
S gl __ i — R 2J ol il bt )i
At X (AP (Ayf
+S|r(2m“+1)s r(2m”+1+¢) Hazu“1 S|rF( 1)
(6.15)
y-momentum: about (i,j+1/2)
1 —
V|n]L+ Vlnj+1 Q p V:rlj+ 2\/Inj+1 +V|nlj+1 Vir,]j+§ 2Vir,]j+; +Vir,]J'—}
Stz —_Mjn j 2 4 2 2 2
Az' Ny (AX)Z Ay
(6.16)
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Equation (6.15) can be written as:

un+1 (1 Ha Afsw?( 1)).1 St25|r127zr'”1$|r(2m‘”1+¢)

b SF
un _ZJn un un _ZJn +Un 617
AT : J% j i+%, j + i—%,j N i+%,j+1 i+%,j i+%-j = At (Qn Q ) ( )
- — % SEACTH T
or,

u”*z1 (1—Ha@ SA_é[SIrF(Wl))Jl 1

(6.18)
At 5 AT n
—<p A+St23|n27z—:“+15|r(27z7“+1+¢) StZAx(ﬂ*“ n.j)
where

u, 21“ Uy U =N, +u
A I+%,J %J 21 %'J“Ll 'Jéj I+?’J_l (6.19)

I (Ayf
in y-mom
VU =AYV A !

i, iy SP (AxF (Y (6.20)

www.manharaa.com




33

or
At T (. 0
\/I”]:lr Vlnj+1 Sg B_m(ﬂ,m—ﬂ,j) (6.21)
where
=AM v —2\/n +vn
g g 2 g g T 62

Axf Ty
6.4 Poisson Equation
At beginning Pp=p"

Equations (6.7) and (6.10) become:

Ui ,—1—Ha@At)u.+2 , At(A—l) [leJ p,njj (6.23)

*n+1

A e
Vi j+ —V| j+ AtB—Ay[pl i1 i JJ (6.24)

Now subtract equation (6.23) from (6.7) yields:

g, ={-Haa)in (A -1-3 (o0, ) 629

and subtract (6.24) from (6.10) yields:

V=V —AB - A; (p"}+1 n’,”) (6.26)

Ij+ Ij+

Let us arbitrarily set A,B,uM,andv" =0 then equations (6.25) and (6.26) become:

urit = (pts; i) 627

I+j
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but

>
and
Ml n+1
L=y
Ij+ Ij+ Ij-|k2

Substitute (6.29) into (6.27) and (6.30) into (6.28) :

st e,
ui+%, ;= i+% P — P
and

ity =vi (o)

i J

Now descritize the continuity equation around the point (i,j) :

(6.28)

(6.29)

(6.30)

(6.31)

(6.32)

(6.33)
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Substitute (6.31) and (6.32) into (6.33) :

u*?:; +A —g((ﬂ’fl iR )—U*i—%,j —-Al +g((ﬂ'. i~ P )
AX
+\f*i,j+§ —g,(ﬂ', =R )—V*i.J—% +§,(ﬂ',j - ﬂ',j—l)_o
Y, -

apj +ol Pl j +Pej HAE j + 2 J+d =0

where

£ 1 rps 1 ARy
:U|+§,J UI—?,j +\fk|,j+§ \fkl,j—?

d X N

(6.34)

(6.35)

Similar to DC the Poisson equation can be developed for AC pumping. It will be:

o APl + Pl HOR o + P +d =0

(6.36)
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where
a= sszAf@ +Sf2AA§/2

O ARV
_U i+.] u i~ +V*I,j+§ V*I,j—é

d X N

6.5 SIMPLE algorithm

SIMPLE algorithm is one of the fundamental algorithm to solve incompressible Navier-

Stockes equations.
The step by step procedure for the SIMPLE algorithm is as follows:
1 First we have to guess initial values of the pressure P"and set initial values of
velocities U*,V".

wHL

2 The values of U ,\f"n+1 will be obtained at all appropriate internal grid points.

. 1 il : :
3 Substitute these values of U™ ,\f“m into the pressure-correction equation, and solve

for P' (using relaxation technique) at all interior grid points.
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4 Calculate P™ atall internal grid points from the equation
P =P"+P
5 The values of P™ obtained in step 4 are used to solve the momentum equations

again. Return to step 2 and substitute P*as P in equations (6.23) and (6.24).

6 Repeat steps 2 to 5 until convergence is achieved

That iterative procedure is rather simple - we use equation (6.35) for all interior points
on a grid. After that one step of iterative procedure is done. Then we check if solution
converges. We can do it simply to check maximum change of pressure on a grid. If it is
bigger than & we continue iterative process. Solution should finish when pressure is
converged.

The method with a large amount of time steps is employed until the steady state
solution is achieved.

The numerical results using SIMPLE algorithm can be verified by comparing the transient
fully developed axial velocity comes from developing flow solution with that comes from
fully developed flow. The SIMPLE algorithm and the program used to solve for velocities

and pressure is included in appendix A.
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Chapter 7
Results and Discussion

7.1.Fully developed flow

The dimensionless governing equations (3.23-3.28) are solved analytically and
numerically for a DC and AC fully developed flow. In this section, the transient velocity and
temperature profiles and the effect of different parameters on these profiles will be discussed.
To study the effect of these parameters analytical and numerical solutions for the velocity
and temperature profiles are computed for different values of Hartmann number, aspect ratio,
Prandtl number, and Eckert number.

In addition, the transient velocity profile in AC fully developed flow and the effect of
Hartmann number and Stanton number on the behavior of the transient velocity will be

discussed.

Hartmann number effect

The effect of Hartmann number on the dimensionless velocity, and dimensionless
temperature profiles is shown in Figures (7.1) and (7.2) respectively. The effect of increasing
Ha is to retard the flow and then reduce the velocity and the temperature. This means that
controlling the electrical conductivity and magnetic flux density will allow to control the
velocity and temperature in the channel. Also, It is seen that at low Hartman number the
velocity and temperature profiles are parabolic, and as the Ha increases, the profiles flatten.
It is seen that the same effect of Ha on the velocity profile is observed on temperature profile,
and that the heat generated from the electric current and magnetic flux will cause an increase

of the temperature from the initial state. In Figures (7.3), and (7.4) the transient behavior of
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the dimensionless centerline velocity, and dimensionless centerline temperature is
plotted for different Hartman numbers. It is observed that increasing Ha will decrease the
time required to reach steady state conditions.

Figures (7.5) and (7.6) illustrate the effect of Hartmann number on the transient
velocity and temperature profiles for the AC pumping. It is seen that Hartmann number has
the same effect as in DC pumping. It is noticed in AC pumping that the velocity and
temperature have pulsating profiles, where the pulse volume decreases as Ha increases and

this is due to the decrease in magnitude of the velocity.

Prandtl number and Eckert number effect

Figures (7.7) and (7.8) depict the transient temperature for different values of the Prandtl
number for DC and AC pumping, respectively. It is observed that the temperature increases
and the time required to reach steady state increases as Pr increases because with increasing

Pr the rate of diffusion of viscous effects increases. Figures (7.9) and (7.10) illustrate the

effect of the Eckert number (ECZUS/CpTW) on the temperature. It is seen that the Eckert

number has the same effect on transient temperature as the prandtl number and this because

with increasing Ec the kinetic energy increases.

Aspect ratio effect

Figure (7.11) and (7.12) illustrate the effect of the aspect ratio on the velocity and
temperature at the mid height of the channel. It is seen that as the aspect ratio increases, the
height of the channel increases which allow to increase the velocity and temperature. This

means that controlling the conduit width will allow to control the velocity and temperature.
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Stanton number effect

Figures (7.13) and (7.14) depict the transient dimensionless velocity u and dimensionless
temperature at different Stanton numbers. It is seen that as the Stanton number increases the
pulsed volume decreases and this because the diffusion time increases compared with forcing
period. This means that at high frequency, the flow seems to be continuous instead of
pulsating flow. It is noticed also that the effect of increasing St is to increase the time required

to reach steady state.

phase angle effect

The transient velocity u at different phase angle is shown in figure (7.15). This figure
illustrate the effect of the phase angle on the flow direction. The figure shows that at phase
angle ¢=0, the fluid flows in positive direction while it flows in the opposite direction at
$=180° , and there is no flow at high frequencies when ¢$=90° . It is concluded that the
direction and the magnitude of the flow can be controlled by the phase shift between the
electrical and magnetic fields.

A comparison of the analytical and numerical results for the centerline steady-state
velocity and temperature is shown below in table (7.1) at different Hartman numbers.
Another comparison for the steady-state velocity and temperature at different dimensionless
Y coordinate is shown in figure (7.16). The analytical and numerical results seems to be in
very good agreement.

A comparison between the numerical and analytical results of a steady AC fully
developed flow is shown in figure (7.17). It is seen that the results are in very good

agreement.
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Table 7.1. Comparison of analytical and numerical methods for steady-state
dimensionless centerline velocity and temperature.

Velocity Temperature (x10°)

Hartman Analytical Numerical Analytical Numerical
number solution solution solution solution

2 0.0904 0.0901 2.7953 2.8964

4 0.0574 0.0572 1.2534 1.2943

6 0.0348 0.0347 0.78006 0.8208

8 0.022 0.0218 0.52224 0.5341

10 0.0147 0.0146 0.36775 0.3710

A Comparison of present results and published analytical results (Zhong et al. 2002) for
steady state DC fully developed flow velocity with a=1 is shown in figure (7.18). It is shown

that there is a very good agreement between the results.
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Figure 7.1: Variation of the dimensionless steady mid width velocity with the
dimensionless Y coordinate at different Hartman numbers with =1
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Figure 7.2: Variation of the dimensionless steady mid width temperature with the
dimensionless Y coordinate at different Hartman numbers with a=1, Ec=0.01 and
Pr=0.1
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Figure 7.3: Transient behavior of the centerline velocity at different Hartman
numbers with a=1
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Figure 7.4: Transient behavior of the centerline dimensionless temperature at different
Hartman numbers with =1, Ec=0.01 and Pr=0.1
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Figure 7.5: Transient behavior of the centerline dimensionless velocity at different
Hartman numbers for the AC pumping with a=1, St=10 and ¢=0.
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Figure 7.6: Transient behavior of the centerline dimensionless temperature at
different Hartman numbers for the AC pumping with a=1, Ec=0.01, Pr=0.1, St=10 and

»=0.
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Figure 7.7: Transient behavior of the centerline temperature at different Prandtl
numbers for DC pumping with =1, Ec=0.01 and Ha=2.
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Figure 7.8: Transient behavior of the centerline temperature at different Prandtl
numbers for AC pumping with a=1, Ec=0.01, Ha=2, St=10 and ¢=0.

www.manharaa.com




70

Ec=0.05

Ec=0.01

0.2 Ec=0.005 7

Ec=0.001
|

0 T 1 1 1 | | | |
0 0.02 004 006 008 01 012 0.14 0.16 0.18 0.2
Dimensionless Time

Dimensionless Temperature

Figure 7.9: Transient behavior of the centerline temperature at different Eckert
numbers with =1, Ha=2 and Pr=0.1
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Figure 7.10: Transient behavior of the centerline temperature at different Eckert
numbers for AC pumping with =1, Ha=2, Pr=0.1, St=10 and ¢=0.
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Figure 7.11: Transient behavior of the centerline dimensionless velocity at different
aspect ratio with Ha=2.
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Figure 7.12: Transient behavior of the centerline dimensionless temperature at
different aspect ratio with Ha=2, Ec=0.01 and Pr=0.1
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Figure 7.13: Transient behavior of the centerline dimensionless velocity at different
Stanton number for AC pumping with a=1, Ha=2 and ¢=0.
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Figure 7.14: Transient behavior of the centerline dimensionless temperature at
different Stanton number for AC pumping with a=1, Ec=0.01, Pr=0.1, Ha=2 and ¢=0.
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Figure 7.15: Effect of phase shift angle on the dimensionless centerline velocity for
AC pumping with =1, Ha=2 and St=10
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Figure 7.16: Comparison of analytical and numerical methods for steady state
temperature with =1, Ec=0.01, Pr=0.1 and Ha=3.
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Figure 7.17: Comparison of analytical and numerical methods for steady state AC
fully developed flow velocity with a=1, Ha=10 and ¢=0.
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Figure 7.18: Comparison of present results and published analytical results (Zhong
et al. 2002) for steady state DC fully developed flow velocity with a=1.

.7.2 Developing flow
The dimensionless governing equations (3.29-3.33) and (3.36-40) are solved

analytically and numerically for a DC and AC developing flow. In this section, the transient
velocity profile, and the effect of Hartmann number and Stanton number on the behavior of
the transient velocity and the entrance length in DC and AC developing flow is studied. To
study the effect of these parameters the pressure correction method and SIMPLE algorithm
are applied to solve for the velocity profiles at different values of Hartmann number and

Stanton number.
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Hartmann number effect

Figure (7.19) and (7.20) illustrate the effect of Hartmann number on the velocity
profile and the entrance region length. It is seen that the mid width velocity components U
and V decreases as the Hartmann number increases, which means that a slightly conductive
fluid is enough to propel the fluid. It is also seen that the axial velocity U increases and the
velocity component V decreases until they reach the fully developed region which is
influenced by the Hartmann number and this is due to the effect of Hartmann number on the
Lorentz force. This means that controlling the electrical conductivity and magnetic flux
density will allow to control the entrance region length.

Figure (7.21) depict the dimensionless pressure P which decreases as the Hartmann
number increases. It is noticed that the pressure increases at the channel inlet and then
decreases until reaching a constant pressure gradient at the channel fully developed region.

The variation of velocity component U with the dimensionless Y coordinate is shown
in figure (7.22) at different Hartmann numbers. It is seen that at low Hartman number the
Axial velocity (U) profile is parabolic, and as the Ha increases, the profiles flatten.

The effect of Hartmann number on the transient behavior of the mid width
dimensionless centerline velocity components U and V is shown in Figures (7.23) and (7.24).
It is seen that the effect of increasing Ha is to decrease the time required to reach steady state.

The effect of Hartmann number on the behavior of the transient velocity for AC pumping
is also discussed. Figures (7.25), (7.26) and (7.27) illustrate the effect of Hartmann number
on the dimensionless transient velocity components profiles and dimensionless pressure,
respectively. It is seen that the mid width velocity components U and V affected in the same

way as in DC pumping. It is noticed also that the velocities have pulsating behavior.
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Stanton number effect
Figures (7.28), (7.29) and (7.30) depict the transient dimensionless velocity

components, and the dimensionless pressure at different Stanton numbers. It is seen that as
the Stanton number increases the pulsed volume decreases. This means that at high
frequency, the flow seems to be continuous instead of pulsating flow.
Phase angle effect

The transient velocity component u at different phase angle is shown in figure (7.31).
This figure illustrate the effect of the phase angle on the flow direction. The figure shows
that at phase angle ¢=0, the fluid flows in positive direction while it flows in the opposite
direction at $=180° , and there is no flow at high frequencies when ¢$=90° . It is concluded
that the direction and the magnitude of the flow can be controlled by the phase shift between
the electrical and magnetic fields.

A comparison of the transient fully developed axial velocity comes from developing flow
solution ( SIMPLE algorith) with that comes from fully developed flow solution (ADI
method) is shown in figure (7.32). It is seen that there is a good agreement between the two

profiles.
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Figure 7.19: Variation of the dimensionless mid width axial velocity U with the
dimensionless X coordinate at different Hartman numbers with a=1 and Re=0.
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Figure 7.20: Variation of the dimensionless mid width velocity component V with
the dimensionless X coordinate at different Hartman numbers a=1 and Re=0.
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Figure 7.21: Variation of the dimensionless pressure P with the dimensionless X
coordinate at different Hartman numbers ¢=1 and Re=0.
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Figure 7.24: Transient behavior of the mid length centerline velocity component V
at different Hartman numbers a=1 and Re=0.
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Figure 7.25: Transient behavior of the mid length centerline axial velocity U at
different Hartman numbers for AC pumping a=1, Re=0, St=10 and ¢=0.
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Figure 7.26 Transient behavior of the mid length centerline velocity component V
at different Hartman numbers for AC pumping a=1, Re=0, St=10 and ¢=0.
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Figure 7.27: Transient behavior of the dimensionless pressure at different Hartman
numbers for AC pumping a=1, Re=0, St=10 and ¢=0.
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Figure 7.28: Transient behavior of the axial velocity u at different Stanton numbers
for AC pumping with a=1, Re=0, Ha=0 and ¢=0.
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Figure 7.29: Transient behavior of the dimensionless velocity v at different Stanton
numbers with ¢=1, Re=0, Ha=0 and ¢=0.
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Figure 7.30: Transient behavior of the dimensionless pressure at different Stanton
numbers with a=1, Re=0, Ha=0 and ¢=0.
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Figure 7.32: Comparison of transient velocity for fully developed flow and
developing flow solutions with a=1, Re=0, Ha=10, St=10 and ¢=0.

.7.3 Pump design
It is known that the MHD micropump is used to propel different types of conducting

fluids in many applications with different flow rates. Hence, the main step in the design of
the MHD micropump is a good selection of the magnitude of certain parameters to be
suitable for the desired pressure and flow rate.

In this section, different magnitudes of electrical conductivity, applied voltage, magnetic
flux and aspect ratios are taken as a study case to show their effect on controlling the flow
velocity. The following tables show the effect of these parameters on the steady fully

developed flow velocity.
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Table 7.2 Electrical conductivity effect (B=0.5 T and V=10 volts)

fluid Electrical Maximum Pressure Flow rate
conductivity velocity difference (u/min)
(m/s) (Pa)
Saline solution 2.2e-3 7e-6 0.323 0.002
Sea water 4 0.0122 587 4.1

Table 7.3 Voltage effect (sea water with 6=4 siemens/m and B=0.5T)

Voltage Maximum velocity | Pressure difference Flow rate
(volts) (m/s) (Pa) (ul/min)
0.5 0.003 146.7 1.03
5 0.0305 1467 10.3

Table 7.4 Magnetic flux effect (sea water with 6=4 siemens/m and V=10 volts)

Magnetic flux Maximum velocity | Pressure difference Flow rate
density (m/s) (Pa) (ul/min)
(Tesla)

0.1 0.0024 117.3 0.82
0.5 0.0122 587 4.1
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Table 7.5 Aspect ratio effect (sea water with 6=4 siemens/m, V=10 volts and

B=0.5T)
Aspect ratio Maximum Pressure Flow rate
(height/width) velocity difference (W/min)
(m/s) (Pa)
0.5 0.0122 587 4.1
1 0.0315 585 21.27

In table (7.2) low and medium values of electrical conductivity for two different fluids
are taken to show their effect on the steady flow velocity. It is seen that using high conducting
fluid yields high flow rate with high pressure. Tables (7.3) and (7.4) show the effect of
voltage and magnetic flux on the flow rate and pressure difference for sea water. It is noticed
that controlling the voltage and magnetic flux will allow to control the flow rate and pressure
with linear relation between them.

The effect of aspect ratio (height/width) is shown in table (7.5). It is seen that the flow
rate increases as the height of the channel relative to width increases and a suitable value of
the aspect ratio must be selected to predict the desired flow rate. From figure (7.19) it is
noticed that for a low conductive liquids the suitable channel length can be taken about 100
times of the channel width to reach the fully developed region.

The relations between the flow rate, pressure difference and the induced electric current
are shown in figures (7.33) and (7.34). In these figures the results were obtained for sea water
by changing the magnetic flux density B, or the applied voltage with keeping constant other
parameters ( h=75um, w=150um, L=22mm and o=4 siemens/m). It is seen from this figure

that increasing the current will increase the flow rate and the pressure difference linearly.
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Figure 7.33: Variation of pressure difference with flow rate-system curve
(h=75um, w=150um, L=22mm and ¢=4 siemens/m)
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Figure 7.34: Variation of pressure difference with flow rate-system curve
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Chapter 8

Conclusions and Recommendations

Analytical and numerical methods to predict the fully developed flow velocity and
temperature distribution in a magnetohydrodynamic (MHD) micropump has been presented.
The analytical results are found in very good agreement with the numerical results. Also a
numerical method to predict the velocity distribution in a developing magnetohydrodynamic
(MHD) micropump flow has been presented. The effect of fluctuating Lorentz force on the
Ac magnetohydrodynamic micropump flow is studied for both developing and fully
developed flow

In this study, the effect of Hartman number, aspect ratio, Prandtl number, Eckert
number, Stanton number and phase angle on the transient velocity and temperature profiles
was investigated. The following conclusions can be summarized in the following points:

1- It is seen that at low Hartman number the velocity profiles in the MHD
micropump using Lorentz force are parabolic, and these profiles are similar to
that produced by external pressure gradient.

2- It is seen that the velocity decreases as the Hartmann number increases, which
means that a slightly conductive fluid is enough to propel the fluid

3- It is seen from the transient behavior that the effect of increasing Ha is to decrease
the time required to reach steady state.

4- It is seen that that the heat generated from the electric current and magnetic flux
will cause an increase of the temperature from the initial state, and the same effect

of Ha on the velocity profile is observed on temperature profile.
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5- It is seen that the velocity and temperature increases as the aspect ratio increases.
This means that controlling the conduit width will allow to control the velocity
and temperature.

6- It is noticed that controlling the flow and the temperature can be achieved by
controlling the potential difference, the magnetic flux, aspect ratio and by a good
choice of the electrical conductivity.

7- It is observed that the temperature increases and the time required to reach steady

state increases as Pr and Eckert number (EC=U§/C,T,, ) increases.

8- It is noticed in AC pumping that the velocity and temperature have pulsating
profiles. And as the Stanton number increases the pulsed volume decreases. This
means that at high frequency, the pulsed volume is small which yields a
continuous flow instead of pulsating flow.

9- It is noticed also that the effect of increasing St is to increase the time required to
reach steady state.

10-  The magnitude and direction of the flow can be controlled by the phase shift
between the electrical and magnetic fields. It is noticed that at phase angle ¢=0,
the fluid flows in positive direction while it flows in the opposite direction at
$=180°

The following recommendations can be followed in future work:

1- It is recommended to take into account the effect of the different parameters
discussed previously on the flow and temperature in the design of the AC MHD

micropump.
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2- It is recommended to take into account the temperature rise and it's effect on the

velocity profile in the design of the AC MHD micropump.

3- It is recommended to solve the same problem with variable properties, especially
the viscosity.

4- It is recommended to solve the same problem for a three-dimensional laminar
flow.
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Appendices
Appendix A
Programs
A-1 ADI numerical technique

The following program is performed to solve the 2-d navier stockes equations and
energy equation in an incompressible viscous fully developed flow in a
Magnetohydrodynamic micropump with Fluctuating Lorentz force using a numerical
marching technique which is the ADI method.

% solve tridiagonal system with thomas algorithm. tri(a,b,c)*x =r.
% solution returned in r array.

% input

% a,b,c arrays containing the tridiag matrix (these are not changed)
% r array containing the right hand side (destroyed in call)

% n  size of the system

% output

% x  solution returned in x array

% work

% cwrk work array so that original matrix is not destroyed

% forward elimination
clear

alpha=1,;

n=19;

dz=alpha/20;

dy=1/20;

dt=.05;

ke=101;

%B=0.44;
%segma=2.2e-3;
%V=2;

%mu=1.09e-3;
%den=1025;
%nu=mu/den;
%Ha=B*w*sgrt(segma/mu);
%Ti=300;

Ha=10;

st=10;
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phi=0;
pr=0.1;
pstar=0;
Ec=0.05;
N=1-pstar;
for k=1:ke
t(k)=dt*(k-1);
end
for j=1:21
fori=1:21
u(i,j,1)=0;
end
end

for k=1:ke
fori=1:21
u(i,1,k)=0;
u(i,21,k)=0;
end
end

for k=1:ke
for j=1:21
u(1,j,k)=0;
u(21,j,k)=0;
end
end

for k=2:ke
%%%%%%%%%%%%
chek=(-1)"k;
if chek>0;
for j=2:20

a(1,j,k)=0;

c(n,j,k)=0;

fori=1:n
b(i,j,K)=-(1+2*dt/(st"2*dy"2)+Ha"2*(dt/st"2) *sin(2*pi*t(k))"2);

end

for i=2:n
a(i,j,K)=dt/(st"2*dy"2);

end

fori=1:n-1
c(i,j,K)=dt/(st"2*dy"2);

end

end
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for j=2:20
fori=1:21
u(i,j,1)=0;
end
end
for j=2:20
fori=1:n
r(i,j,k)=-(u(i+1,j,k-1)+(dt/st"2*dz"2)*(u(i+1,j+1,k-1)-2*u(i+1,j,k-1)+u(i+1,j-1,k-
1))+(dt/st2)*(sin(2*pi*t(k))*sin(2*pi*t(k)+phi)-pstar));
end
end

fac(1,j,k) =1.0/b(1,j,k);
cwrk(1,j,k) = ¢ (1,j,k)* fac(1,j,k);
r(1,j,k) =r(1,j,k)*fac(1,j,k);

fori=2:n
fac (i,j,k) =1.d0/( b(i,j,k) - a(i,j,K)*cwrk(i-1,j,k) );

cwrk(i,j,k) = c (i,J,k) * fac(i,j,k);

r(i,j,k) = (r(,j,K) - r(i-1,j,k) * a (i,j,k)) * fac(i,j,k);
end
Q/fmmmmmmmmmmmmmmmmmmmmm e mmmmmmm e mmmmmmm e mmm e

% back substitution
% put solution into x array, r(n) already has solution
x(n,j,K) = r(n,j,k);
fori=n-1:-1:1
X(i,j,K) = r(i,j,k) - cwrk(i,j,k)*x(i+1,j,k);
end

% end of thomas
end
for j=2:20
for i=1:n
u(i+1,j,k)=x(i,j,k);
end
end

% End of the first step of the ADI method in i with different

else
for i=2:20
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b(i,j,k)=-(1+2*dt/(st"2*dz"2)+Ha"2*(dt/st*2) *sin(2*pi*t(k))"2);
end
for j=2:n
a(i,j,K)=dt/(st"2*dz"2);
end
for j=1:n-1
c(i,j,k)=dt/(st"2*dz"2);
end

end

for i=2:20
for j=1:21

%r(i,j,1)=0;

u(i,j,1)=0;

end

end

for i=2:20
for j=1:n
r(i,j,K)=-(u(i,j+1,k-1)+(dt/st*2*dy"2)*(u(i+1,j+1,k-1)-2*u(i,j+1,k-1)+u(i-1,j+1,k-
1))+(dt/st*2)*(sin(2*pi*t(k))*sin(2*pi*t(k)+phi)-pstar));
end
end

fac(i,1,k) =1.0/b(i,1,k);
cwrk(i,1,k) = c (i,1,k)* fac(i,1,k);
r(i,1,k) =r(i,1,k) * fac(i,1,k);

forj=2:n
fac (i,j,k) = 1.d0/( b(i,j,k) - a(i,j,k)*cwrk(i,j-1,k) );
cwrk(i,j,k) = ¢ (i,j,k) * fac(i,j,k);
r@ipk) = (rijk) - r(i,j-1,k) > a (i,j,k)) * fac(i,j.k);

end

Q= mm e mmmmmmmmmmmmmmmmmmmmmmmm e

% back substitution
% put solution into x array, r(n) already has solution
X(1,n,K) = r(i,n,k);
forj=n-1:-1:1
X(i,j,K) = r(i,j,k) - cwrk(i,j,k)*x(i,j+1,k);
end

% end of thomas

end
for i=2:20
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for j=1:n
u(i,j+1,k)=x(i,j,k);
end
end
%____
end
end

for k=1:ke
for j=1:21;
for i=1:21;
ul(i,j,k)=u(i,j,k);
end
end
end
QI EHH I T I B B I BT TET T T I B B e
% Now solve for the temperature profile
OOt B
for k=1:ke
for j=1:21
fori=1:21
s(i,j,K)=Ha"2*Ec*((sin(2*pi*t(k)+phi)/Ha"2)+ul(i,j,K)*sin(2*pi*t(k)))"2;
end
end
end
for j=1:21
fori=1:21
th(i,j,1)=0;
end
end

for k=1:ke
fori=1:21
th(i,1,k)=0;
th(i,21,k)=0;
end
end

for k=1:ke
for j=1:21
th(1,j,k)=0;
th(21,j,k)=0;
end
end

for k=2:ke
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%%%%%%%%%%%%
chek=(-1)"k;
if chek>0;
%%%%%%%%%%%%
for j=2:20

a(1,j,k)=0;

c(n,j,k)=0;

fori=1:n
b(i,j,kK)=-(1+2*dt/(st"2*pr*dy”2));

end

for i=2:n
a(i,j,k)=dt/(st"2*pr*dy”2);

end

fori=1:n-1
c(i,j,K)=dt/(st"2*pr*dy”2);

end

end

for j=2:20
for i=1:21

%r(i,j,1)=0;

th(i,j,1)=0;

end

end

for j=2:20
for i=1:n

r(i,j,k)=-(th(i+1,j,k-1)+(dt/(st*2*pr*dz"2))*(th(i+1,j+1,k-1)-2*th(i+1,},k-1)+th(i+1,j-1 k-

1))+s(i+1,j,K)*dt/st”2);
end
end

fac(1,j,k) =1.0/b(1,j,k);
cwrk(1,j,k) = ¢ (1,j,K)* fac(1,j,k);
((LjK) = r(Lj,K) * fac(Lj.K):

fori=2:n

fac (ij,k) = 1.d0/( b(i,j,k) - a(ij,k)*cwrk(i-1,j,K) ):

cwrk(i,j,k) = c (i,J,k) *fac(i,j,k);
r(ij,k) = (rijk) - r(i-1,5,k) * a (i,j,k)) * fac(i,j,k);
end

% back substitution
% put solution into x array, r(n) already has solution
x(n,j.K) = r(n,j,k);
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fori=n-1:-1:1
X(i,J,K) = r(i,j,k) - cewrk(i,j,K)*x(i+1,j,K);
end

% end of thomas
end
for j=2:20
for i=1:n
th(i+1,j,k)=x(i,j,k);
end
end

% End of the first step of the ADI method in i with different j
else
for i=2:20

a(i,1,k)=0;

c(i,n,k)=0;

for j=1:n
b(i,j,k)=-(1+2*dt/(st"2*pr*dz"2));

end

for j=2:n
a(i,j,K)=dt/(st"2*pr*dz"2);

end

for j=1:n-1
c(i,),K)=dt/(st"2*pr*dz"2);

end

end

for 1=2:20
for j=1:21

%r(i,j,1)=0;

th(i,j,1)=0;

end

end

for i=2:20
for j=1:n

(3., K)=-(th(i,j+ 1, k-1)+(dt/(st"2*prdy 2))*(th(i+1,j+1,k-1)-2%th(i j+1,k-1)+th(i-1,j+1 k-

1)+s(i,j+1,K)*dt/st2);
end
end

fac(i,1,k) =1.0/b(i,1,k);
cwrk(i,1,k) = c (i,1,k)* fac(i,1,k);
r(i,1,k) =r(i,1,k) * fac(i,1,k);
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forj=2:n

fac (i,j,k) = 1.dO/( b(i,j,k) - a(i,j,k)*cwrk(i,j-1,k) ):

cwrk(i,j,k) = c (i,j,k) * fac(i,j,k);
r(ij,k) = (r(ijk) -r(ij-1,k) *a(i,j,k)) * fac(i,j,k);
end

% back substitution
% put solution into x array, r(n) already has solution
x(i,n,K) = r(i,n,k);
forj=n-1:-1:1
X(i,j,K) = r(i,j,k) - cwrk(i,j,k)*x(i,j+1,k);
end

% end of thomas
end
for i=2:20
for j=1:n
th(i,j+1,k)=x(i,j,k);
end

end

O T T T R T TR T T R T

fori=1:21
y(i)=(i-1)*dy;

end

for j=1:21
2()=(-1)*dz;

end

% to plot the centerline velocity and temperature with time:

for k=1:ke
uk(k)=ul(11,11,k);
thk(k)=th(11,11,Kk) ;
sk(k)=s(11,11,k);
end
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A-2 SIMPLE algorithm

The following program is performed to solve the 2-d navier stockes equations in an
incompressible viscous flow in a Magnetohydrodynamic micropump with Fluctuating
Lorentz force using a numerical marching technique which is the PRESSURE
CORRECTION METHOD

% 1) set the dimensionless parameters and other required quantites:
clear

w=1,

1=100;

nx=100;

ny=10;

ke=50;

dt=0.1;

dx=(l/w)/nx;

dy=1/ny;

Re=0;

Ha=10;

st=10;

phi=0;
a=(2*dt/(st"2*dx"2))+(2*dt/(st"2*dy"2));
b=-dt/(st"2*dx"2);

c=-dt/(st"2*dy”"2);

% 2) Guess values of P* at all the pressure grid points.
for k=1:ke
t(k)=dt*(k-1);
for i=1:2:2*nx+1
for j=1:2:2*ny+1
pst(i,j,k)=0;
end
end
for i=3:2:2*nx+1;
for j=1:2:2*ny+1
pr(i,j,k)=0;
end
end
end
% initial conditions of the velocities at time equal zero(k=1)
for i=2:2:2*nx
for j=1:2:2*ny+1
ust(i,j,1)=0;
end
end
for i=1:2:2*nx+1
for j=2:2:2*ny
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vst(i,j,1)=0;
end
end

for k=2:ke
for m=1:100
% Boundary conditions of the velocities:
% Boundary conditions at the left
for j=1:ny;
vst(1,2*),k)=0;
ust(2,1,k)=0;
ust(2,2*j+1,k)=0;
end
% Boundary conditions at the bottom
for i=1:nx-1;
ust(2*i+2,1,k)=0;
vst(3,2,k)=0;
vst(2*i+3,2,k)=0;
end
% Boundary conditions at the top
for i=1:nx-1;
ust(2*i+2,2*ny+1,k)=0;
vst(3,2*ny,k)=0;
vst(2*i+3,2*ny,k)=0;
end
% Boundary conditions at the right
for j=1:ny;
vst(2*nx+1,2*},k)=0;

end

% 3) Solve for u*(n+1) and v*(n+1) at all appropriate internal grid points.

%------ Calculate the star velocities in the interior points:
for i=4:2:2*nx-2;
for j=3:2:2*ny-1;

if i==2*nx-2
% backword finite divided difference
vsta(i,j,k-1)=(vst(i-1,j-1,k-1)+vst(i+1,j+1,k-1)+vst(i-1,j+1,k-1)+vst(i+1,j-1,k-1))/4;

Ast(i,j,k-1)=Re*(ust(i,j,k-1)*((ust(i,j,k-1)-ust(i-2,j,k-1))/dx)+vsta(i,j,k-1)*((ust(i,j+2,k-
1)-ust(i,j-2,k-1))/(2*dy)))-(ust(i,j,k-1)-2*ust(i-2,j,k-1)+ust(i-4,j,k-1))/(dx"2)-(ust(i,j+2,k-1)-
2*ust(i,j,k-1)+ust(i,j-2,k-1))/dy”"2;

ust(i,j,k)=(1-((dt/st*2)*Ha"2*sin(2*pi*t(k-1))"2))*ust(i,j,k-1)-Ast(i,j, k-
1)*(dt/st"2)+(dt/st*2)*sin(2*pi*t(k-1))*sin(2*pi*t(k-1)+phi)-(dt/(st*2*dx))*(pst(i+1,j,k-1)-
pSt(l-l,j,k'l)),
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else
vsta(i,j,k-1)=(vst(i-1,j-1,k-1)+vst(i+1,j+1,k-1)+vst(i-1,j+1,k-1)+vst(i+1,j-1,k-1))/4;

Ast(i,j,k-1)=Re*(ust(i,j,k-1)*((ust(i+2,j,k-1)-ust(i-2,j,k-1))/2*dx)+vsta(i,j,k-
1)*((ust(i,j+2,k-1)-ust(i,j-2,k-1))/(2*dy)))-(ust(i+2,j,k-1)-2*ust(i,j,k-1)+ust(i-2,j,k-
1)/(dx"2)-(ust(i,j+2,k-1)-2*ust(i,j,k-1)+ust(i,j-2,k-1))/dy"2;

ust(i,j,k)=(1-((dt/st*2)*Ha 2*sin(2*pi*t(k-1))"2))*ust(i,j,k-1)-Ast(i,], k-

1)*(dt/st"2)+(dt/st"2)*sin(2*pi*t(k-1))*sin(2*pi*t(k-1)+phi)-(dt/(st"2*dx))*(pst(i+1,j,k-1)-
pSt(I-l,j,k'l)),

end
end
end

for i=3:2:2*nx-1;
for j=4:2:2*ny-2;

usta(i,j,k-1)=(ust(i+1,j+1,k-1)+ust(i-1,j-1,k-1)+ust(i+1,j-1,k-1)+ust(i-1,j+1,k-1))/4;
Bst(i,j,k-1)=Re*(usta(i,j,k-1)*((vst(i+2,],k-1)-vst(i-2,j,k-1))/2*dx)+vst(i,j k-
1)*((vst(i,j+2,k-1)-vst(i,j-2,k-1))/(2*dy)))-(vst(i+2,),k-1)-2*vst(i,j,Kk-1)+vst(i-2,], k-
)/(dx"2)-(vst(i,j+2,k-1)-2*vst(i,j,k-1)+vst(i,j-2,k-1))/dy"2;
vst(i,j,K)=vst(i,j,k-1)-Bst(i,j,k-1)*(dt/st"2)-(dt/(st"2*dy)) *(pst(i,j+1,k-1)-pst(i,j-1,k-1));

end
end

% substitute the values of ust, and vst into pressure correction equation, and splve
% for pr at all interior grid points. (use Relaxation Technique).

for i=3:2:2*nx-1;
for j=3:2:2*ny-1,;
if i==2*nx-1
d(i,j,k)=(vst(i,j+1,k)-vst(i,j-1,k))/dy;
else
d(i,j,k)=(ust(i+1,j,k)-ust(i-1,j,k))/dx+(vst(i,j+1,k)-vst(i,j-1,k))/dy;
end
end
end

%%%%0Y0-----=--=-===n==mmmmmmmmmme
for j=1:2:2*ny+1
pr(1.j,k)=0;
end
for i=3:2:2*nx-3
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pr(i,3,k)=(-1/(a+c))*(b*(pr(i+1,3,k)+pr(i-1,3,k))+c*pr(i,5,k)+d(i,3,k));
pr(i,1,k)=pr(i,3,k);
pr(i,2*ny-1,k)= (-1/(a+c))*(b*(pr(i+1,2*ny-1,K)+pr(i-1,2*ny-1,k))+c*pr(i,2*ny-
3,k)+d(i,2*ny-1,k));
pr(i,2*ny+1,K)=pr(i,2*ny-1,k);
for j=5:2:2*ny-3
pr(i.j.k)=(-1/a)*(b*(pr(i+2,j,k)+pr(i-2.j,k))+c*(pr(i,j+2,K) +pr(i,j-2,k))+d(i.j.k));
end
end
pr(2*nx-1,3,k)=(-1/(a+b+c))*(b*pr(i-2,j,k)+c*pr(i,j+2,k)+d(i,j,k));
pr(2*nx-1,2*ny-1,k)= (-1/(atb+c))*(b*pr(i-2,j,k)+c*pr(i,j-2,k)+d(i,j,K));
pr(2*nx-1,1,k)=pr(2*nx-1,3,k);
pr(2*nx-1,2*ny+1,k)=pr(2*nx-1,2*ny-1,k);
for j=5:2:2*ny-3
pr(2*nx-1,j,K)=(-1/a)*(b*(pr(i+2,j.K)+pr(i-2,j,K)) +c*(pr(i,j+2,k)+pr(i,j-2,k)) +d(i.j.K));

end
for j=1:2:2*ny+1
pr(2*nx+1,j,K)=2*pr(2*nx-1,j,k)-pr(2*nx-3,j,k);
end
%opr
%end of relaxation
end
%
%---------- calculate the pressure
for i=1:2:2*nx+1
for j=1:2:2*ny+1
p(i.J,K)=pr(i,j,k)+pst(i,j,k-1);
pSt(l,J ,k-l):p(l,_] vk)’
end
end
for i=1:nx
for j=1:ny+1
xu()=dx*(i-1);
yu(j)=dy*(-1);
u(i,j,k)=ust(2*1,2*j-1,k);
end
end
for i=1:nx+1
for j=1:ny
xv(i)=dx*(i-1);
yv(j)=dy*(j-1);
v(i,j,K)=vst(2*i-1,2*j,k);
end
end
for i=1:nx+1
for j=1:ny+1
xp(i)=dx*(i-1);
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yp(j)=dy*(j-1);
pf(i,j,K)=p(2*i-1,2*}-1,k);
end
end

end
end

% ==

for k=1:ke;

uk(k)=u(nx-4,ny/2 k);

vk(k)=v(nx-4,ny/2 k);

pk(K)=pf(nx-4,ny/2,Kk);
end
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